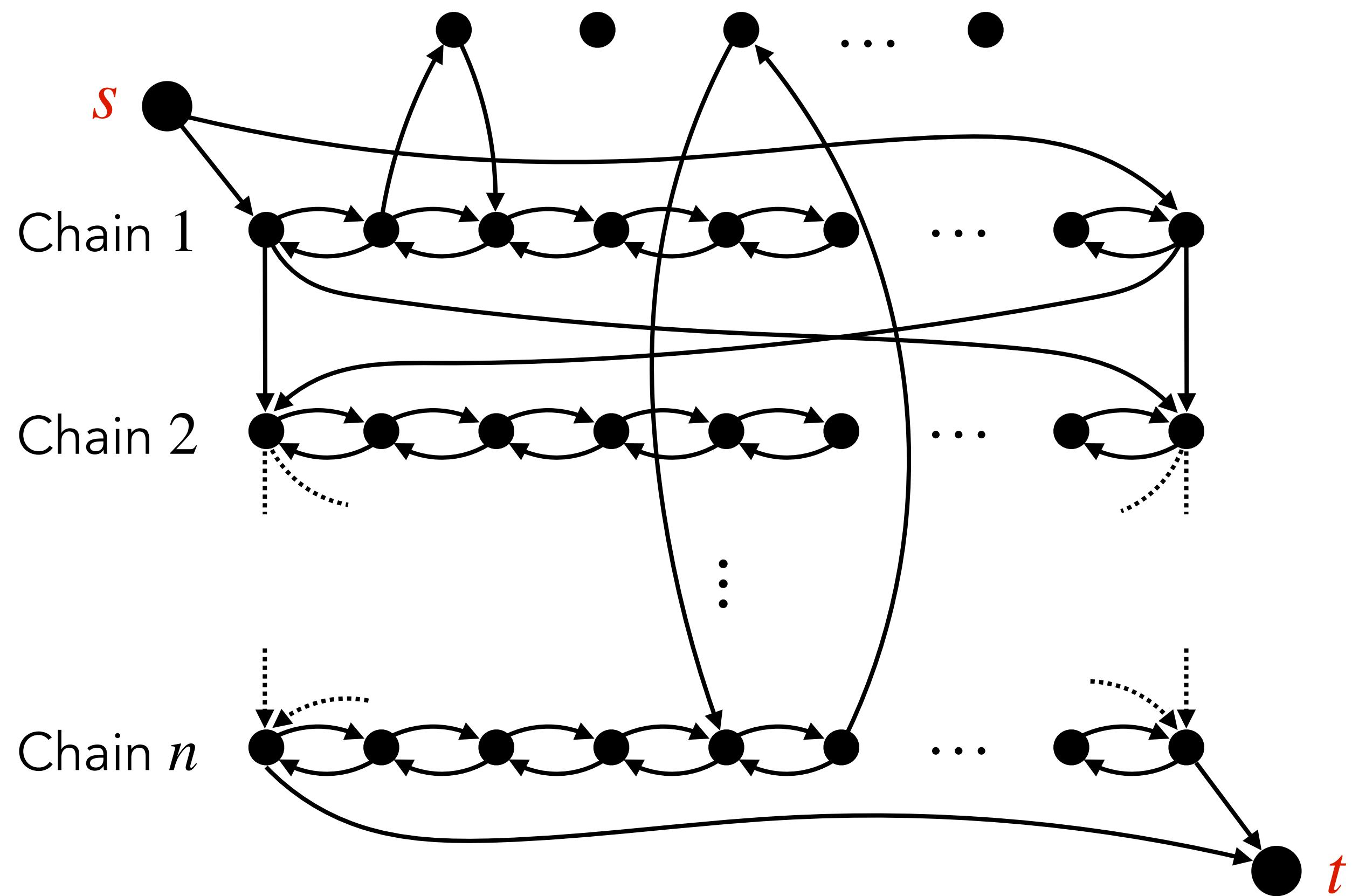


Lecture 37

Reductions: DirHampath (contd.), Hampath, Hamcycle

$3SAT \leq_p DirHampath$

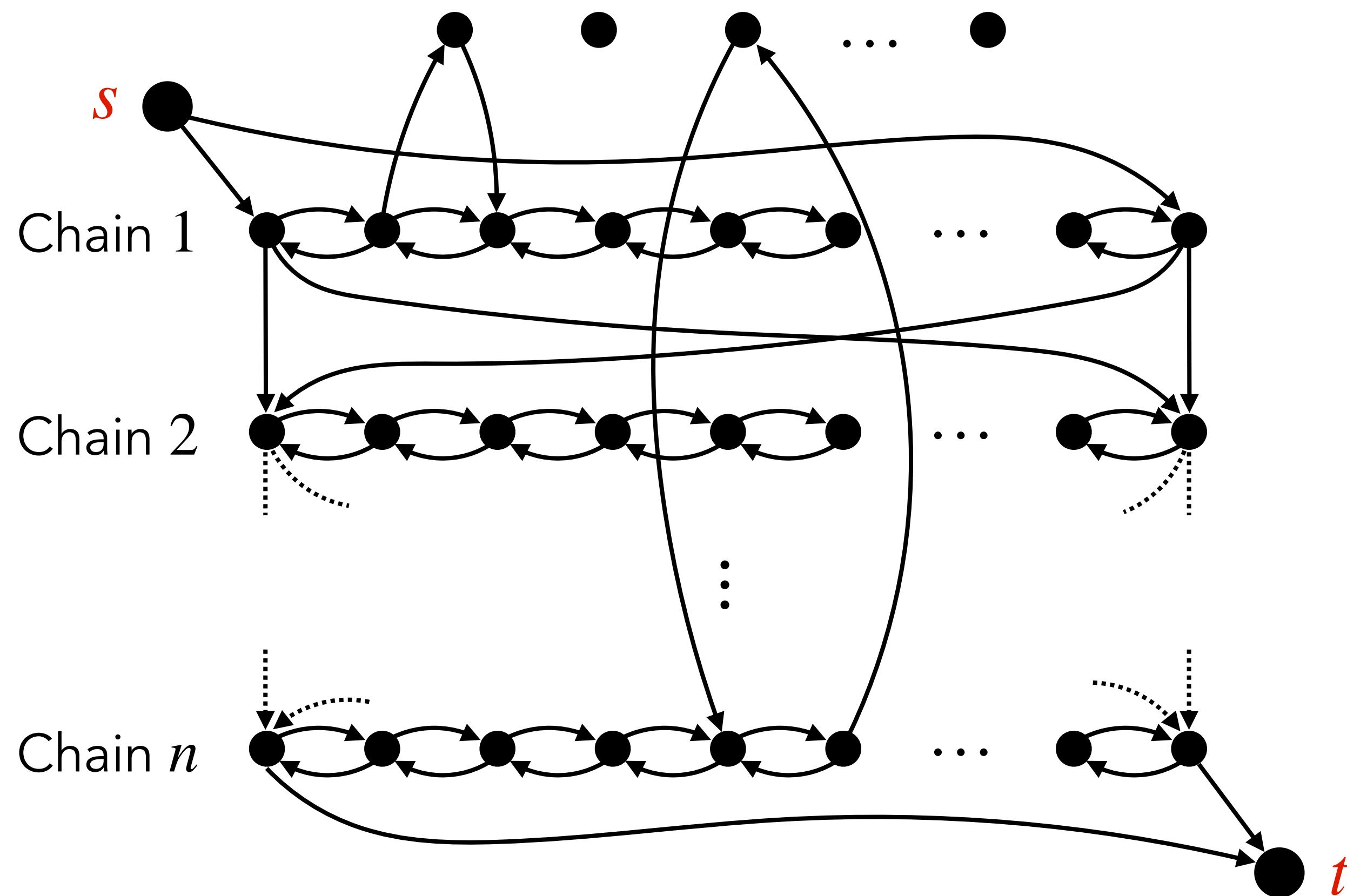
m vertices corresponding to each clause



$3SAT \leq_p DirHampath$

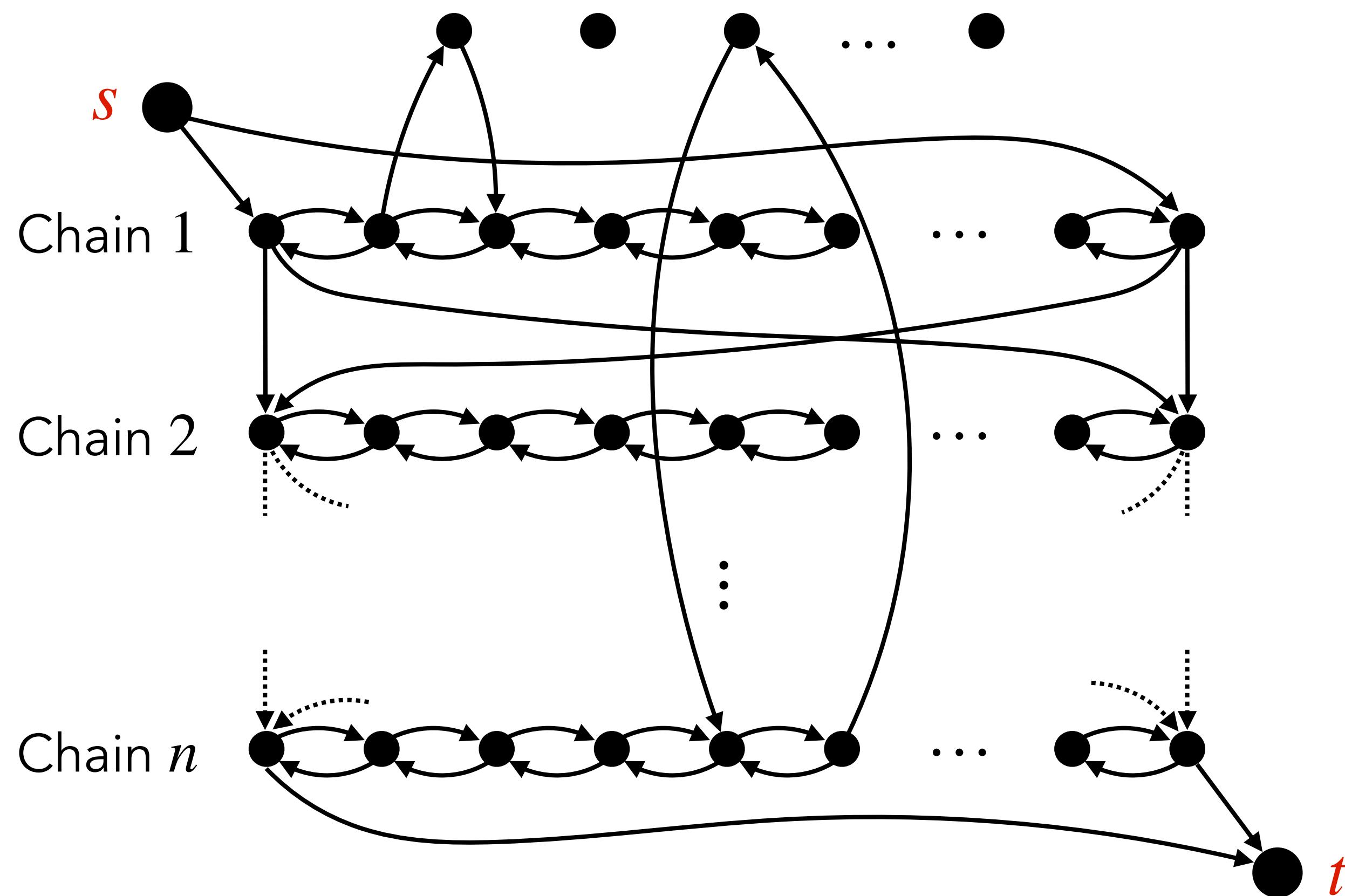
Correctness of Reduction (\Leftarrow):

m vertices corresponding to each clause



$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

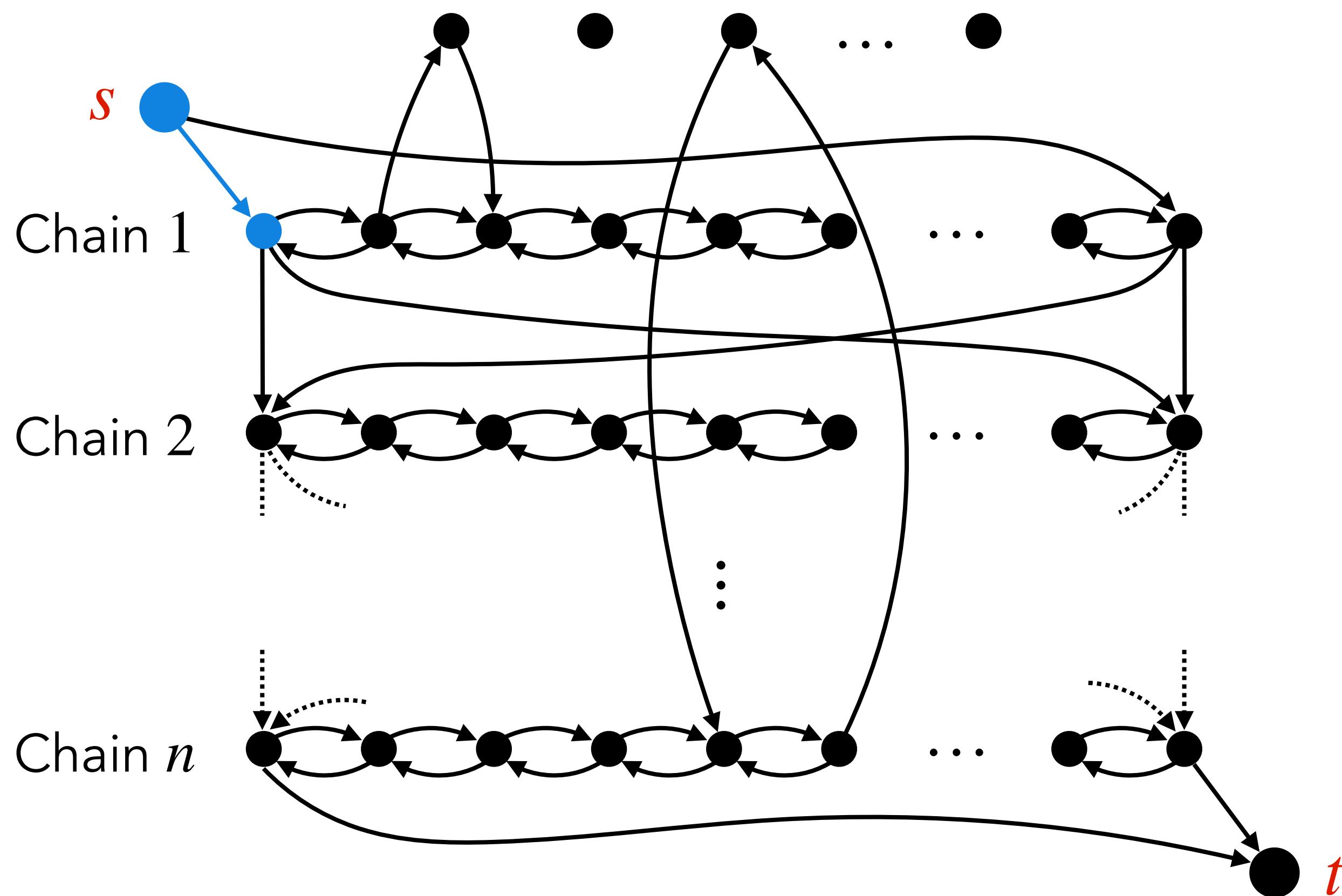


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

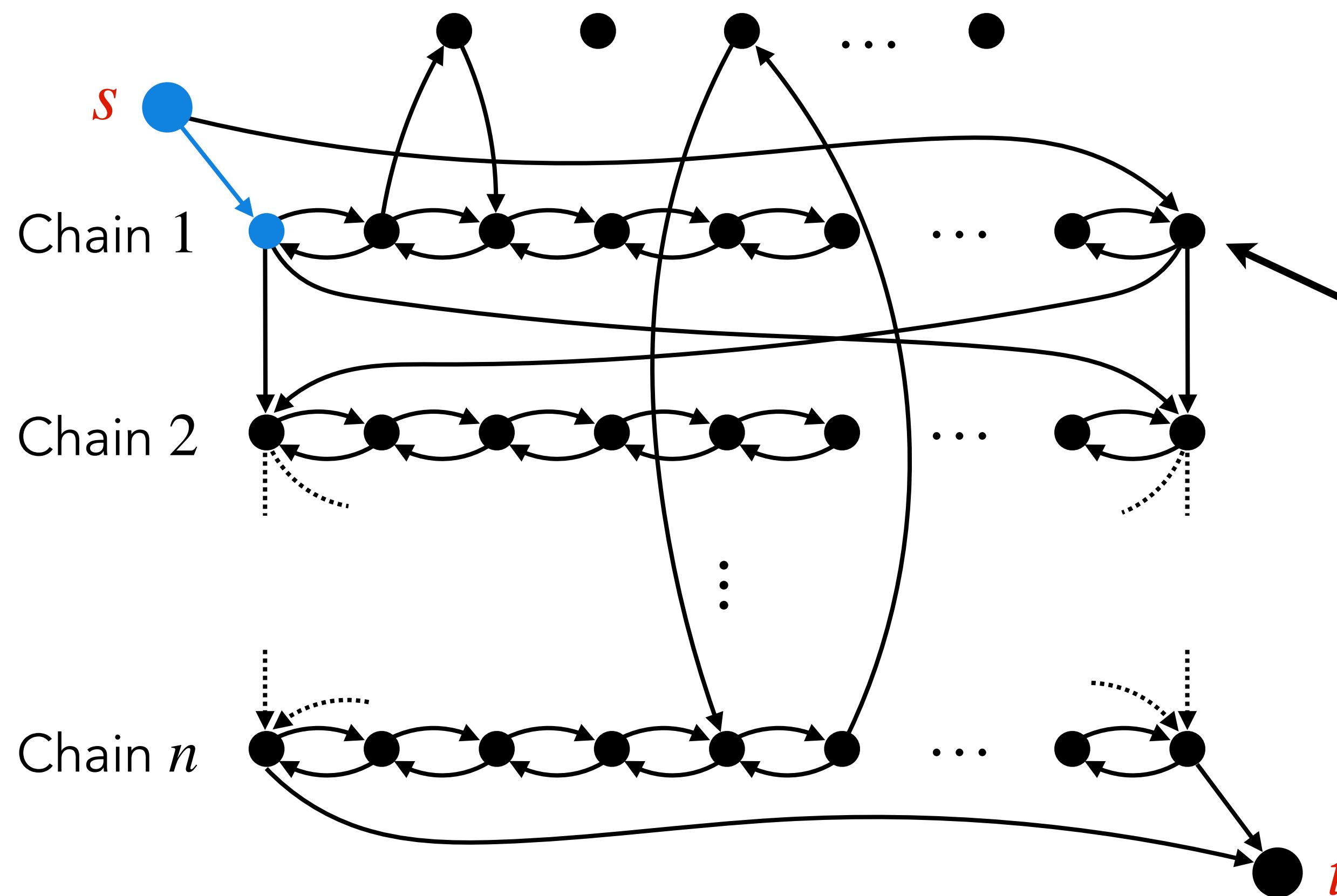


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause



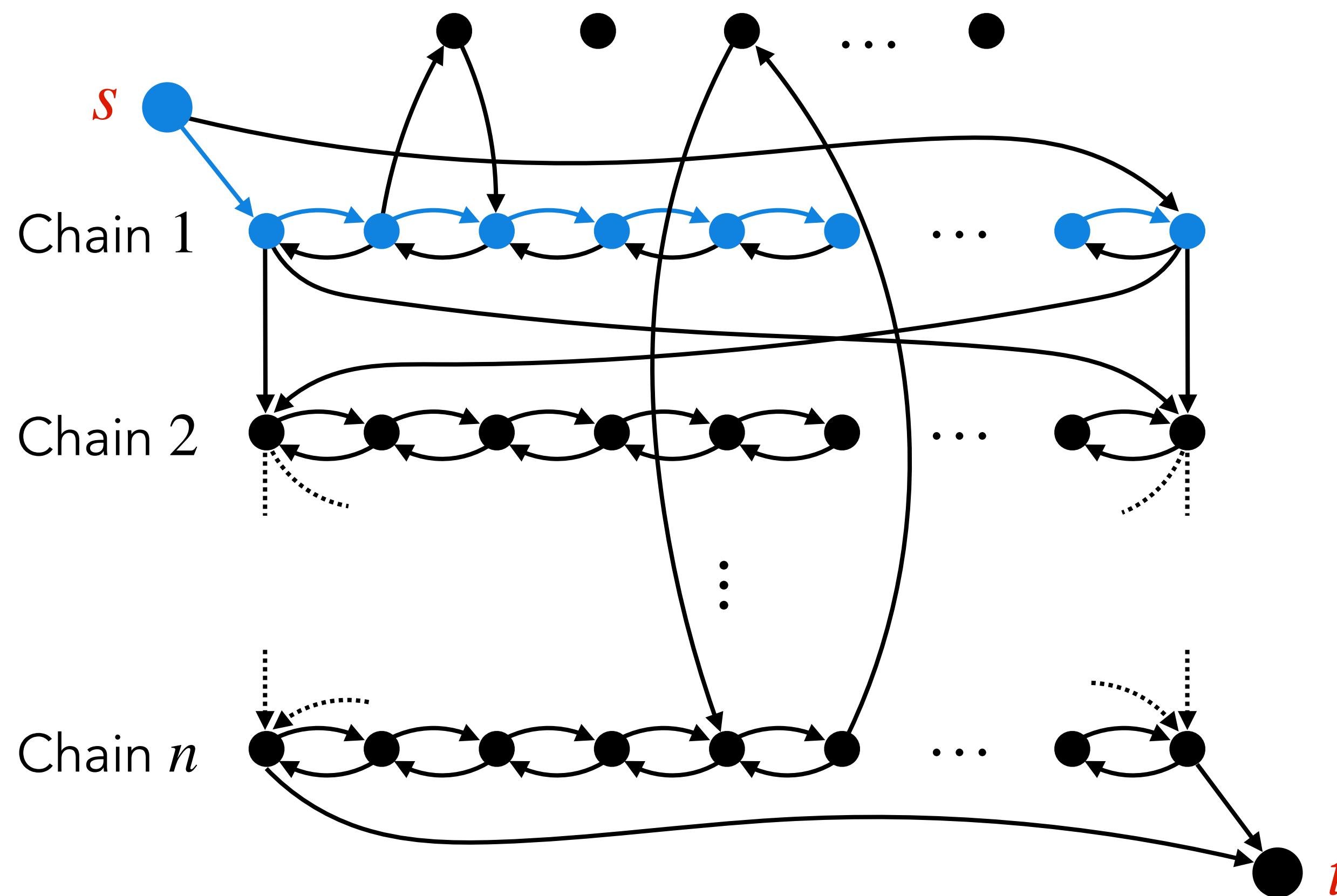
Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.

A chain must be visited **completely** either **left-to-right** or **right-to-left** the **very first time** it is touched in the hamiltonian path.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

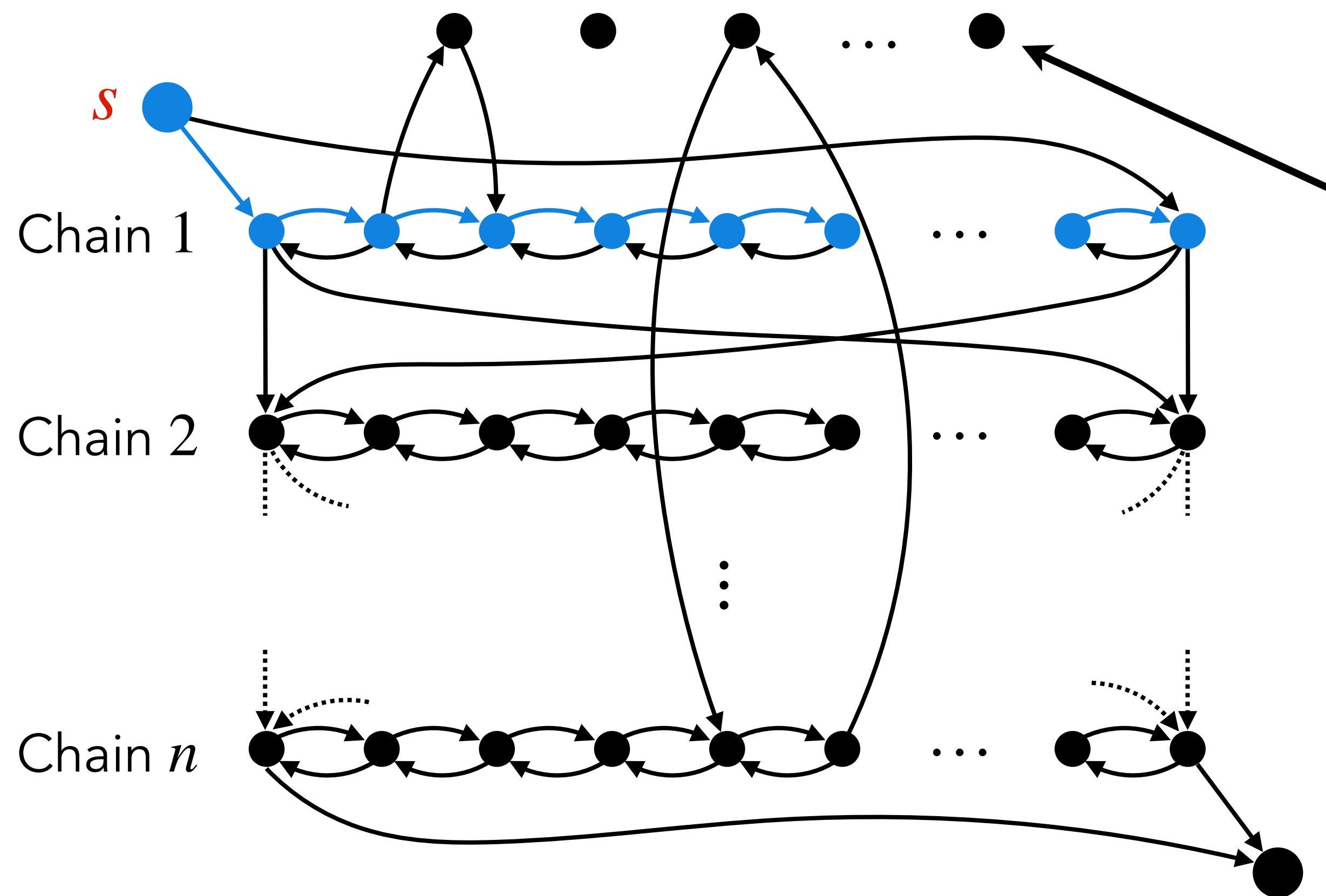


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause



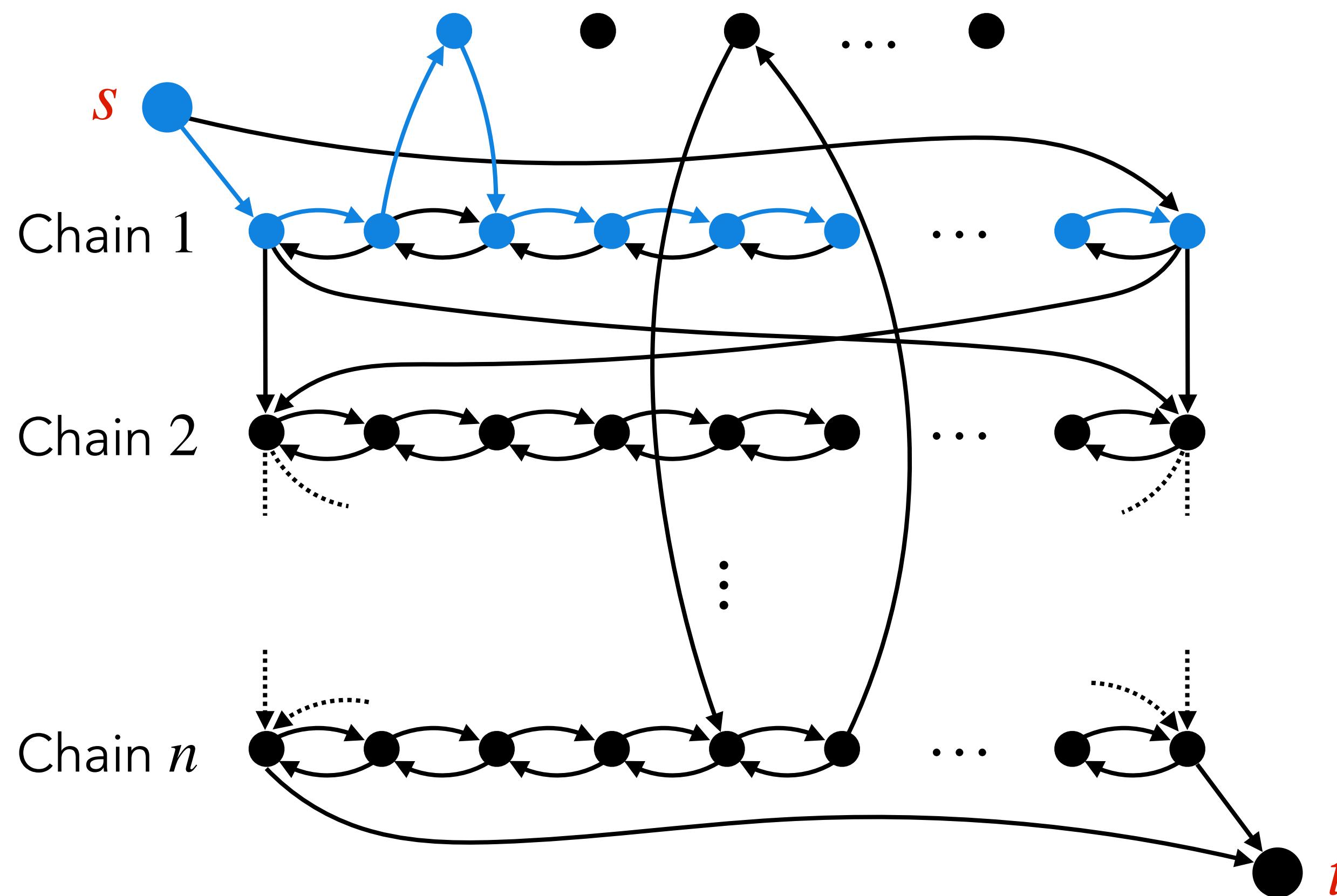
Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.

Clause vertices must be visited during chain traversals.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

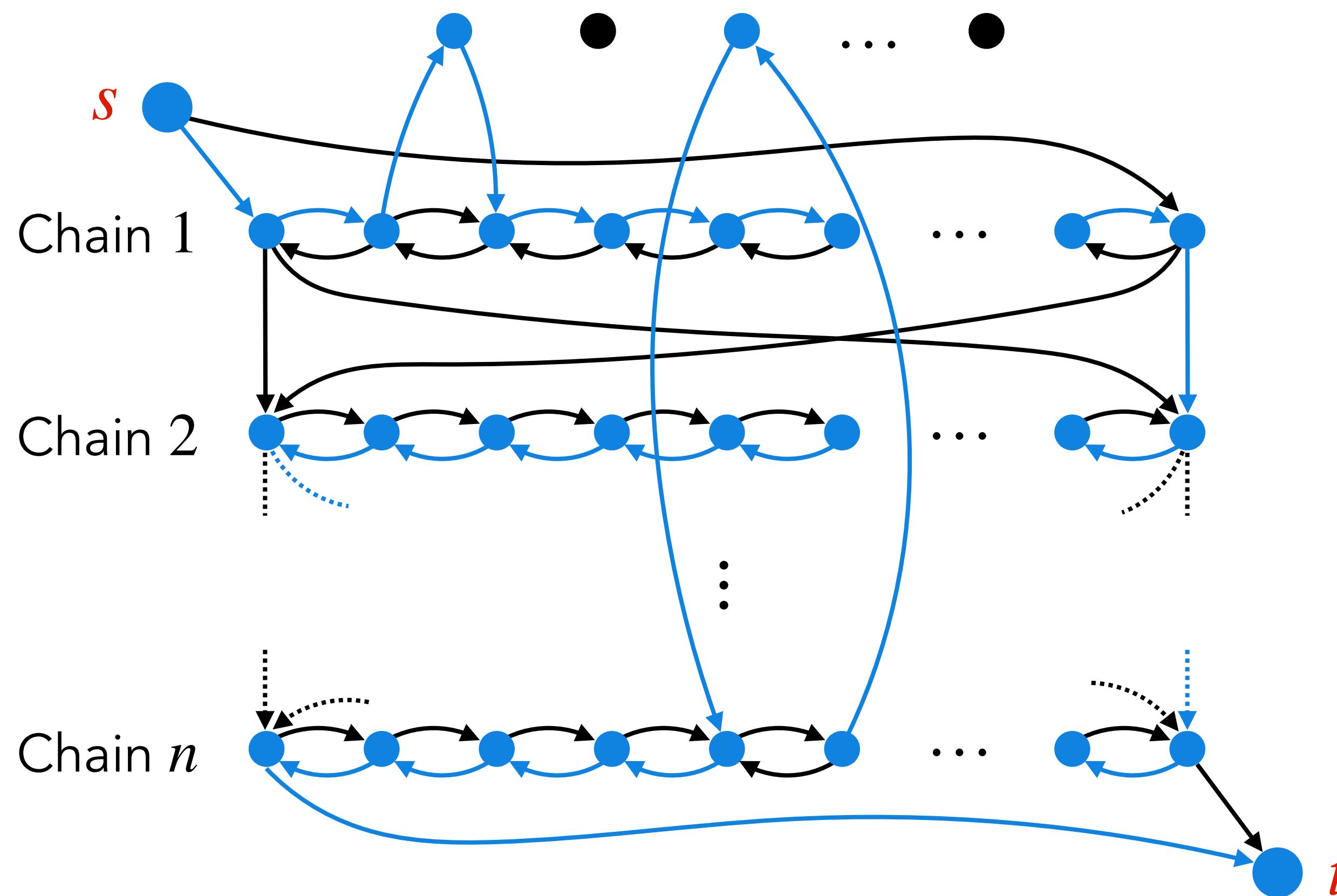


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

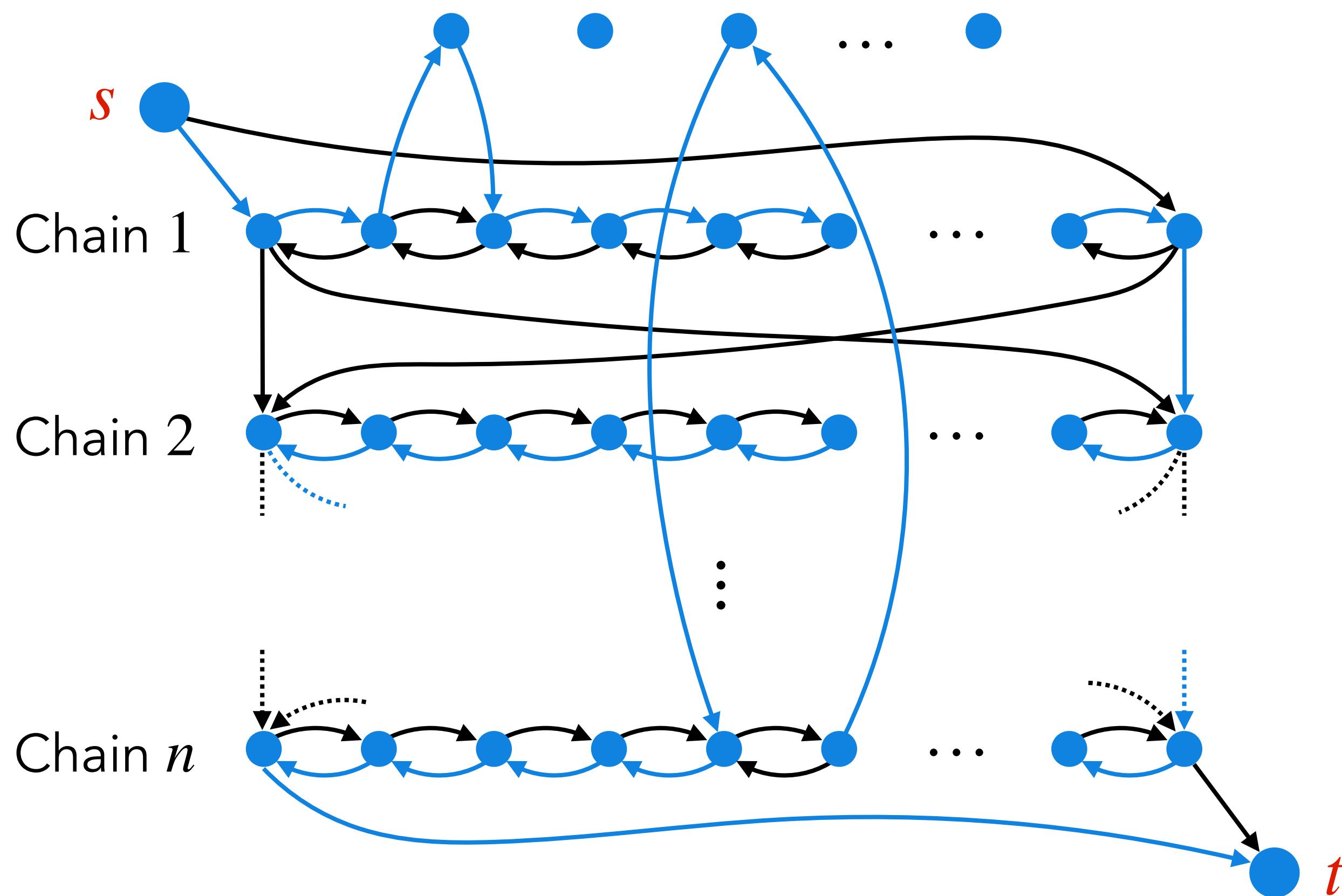


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

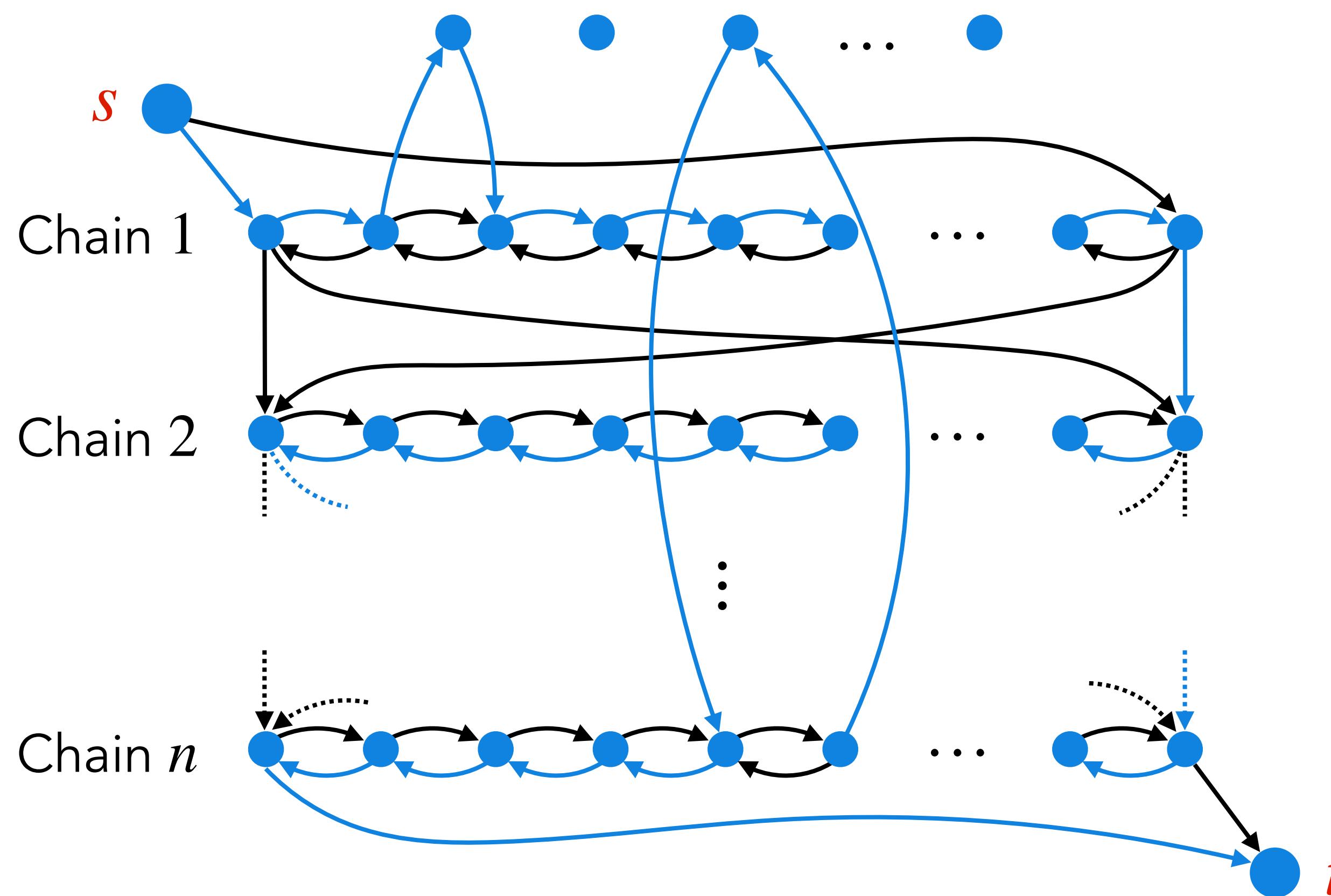


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

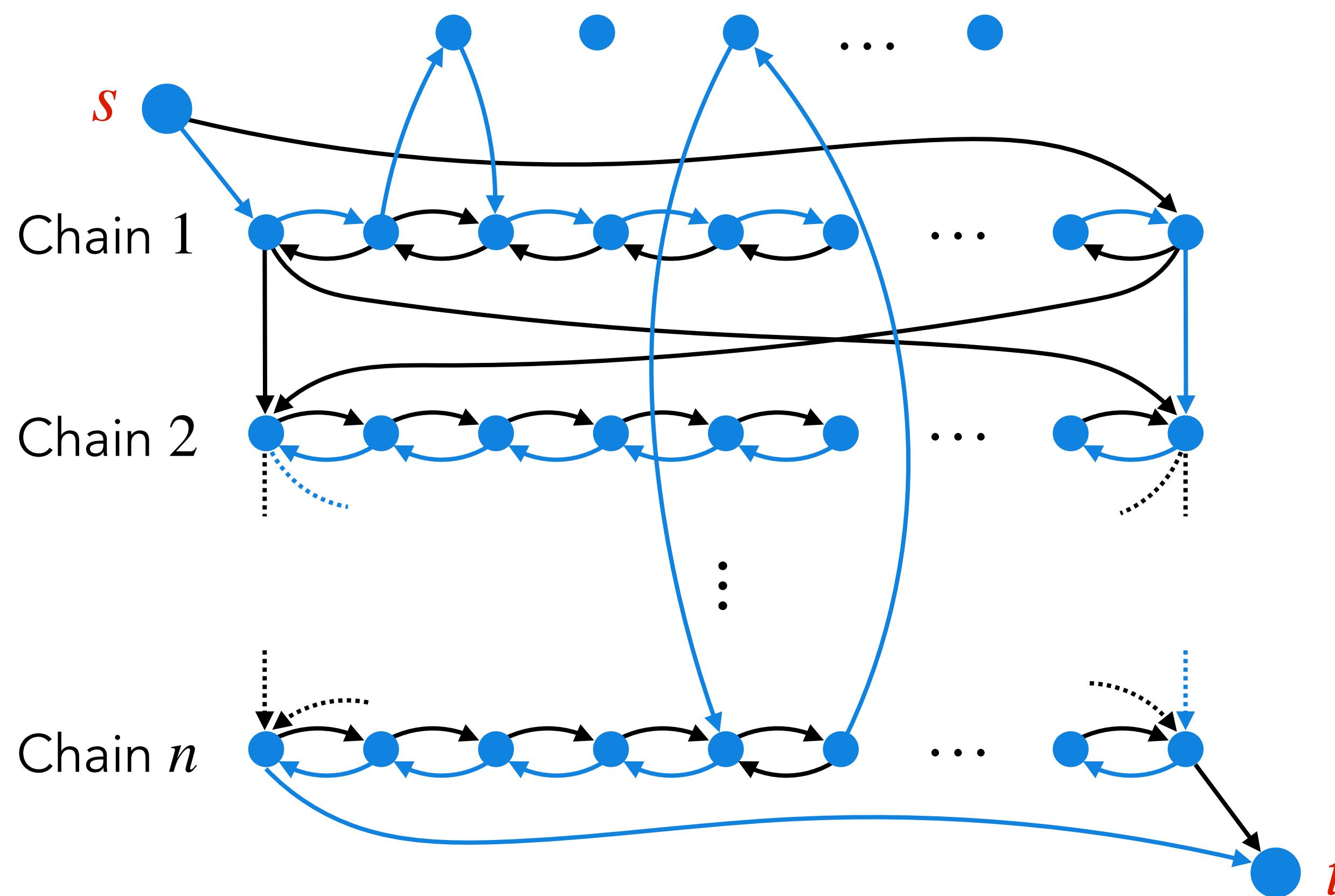


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.
- Satisfying assignment for ϕ :

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

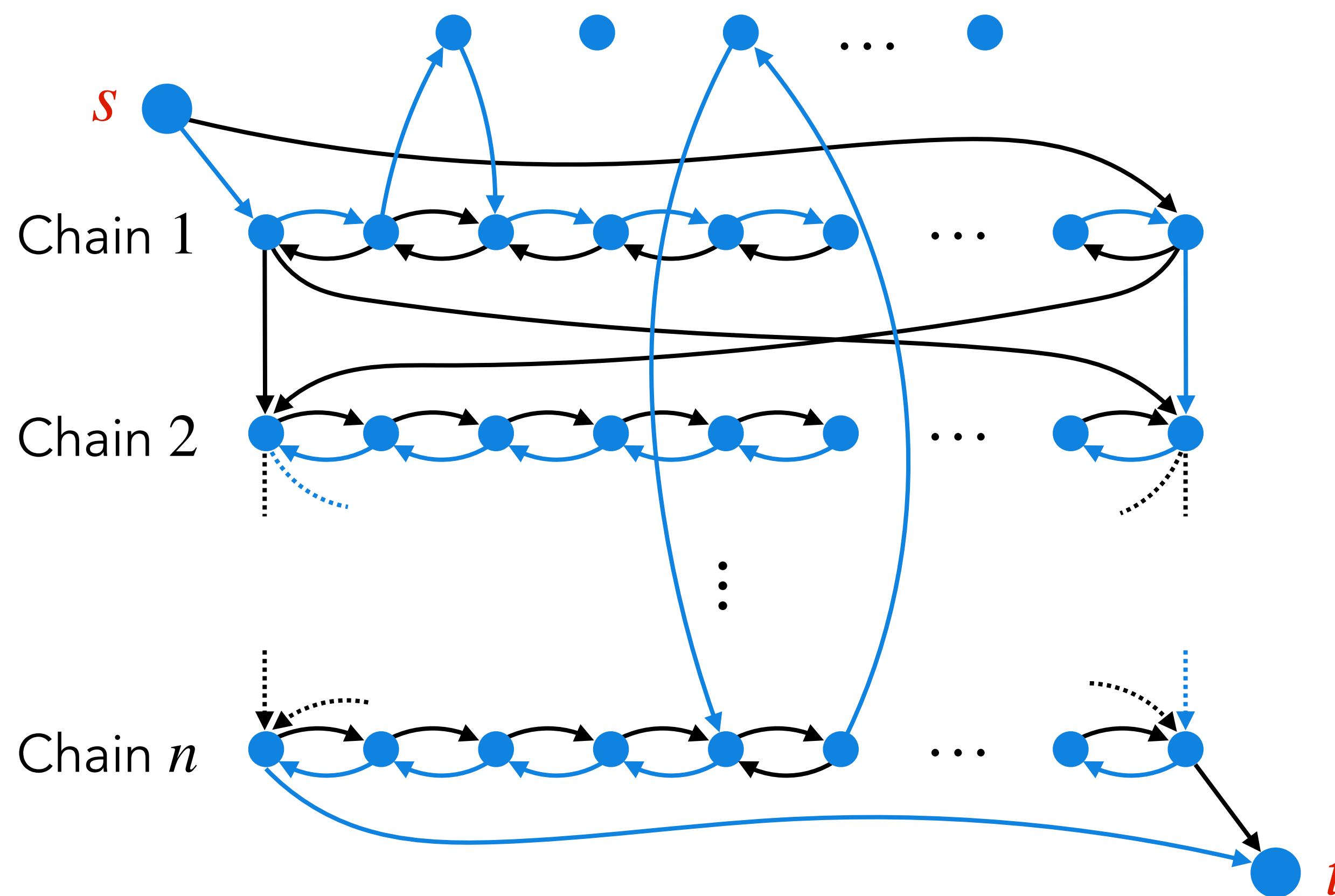


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.
- Satisfying assignment for ϕ :
 - $u_i = 1$, if i th chain is traversed left-to-right.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

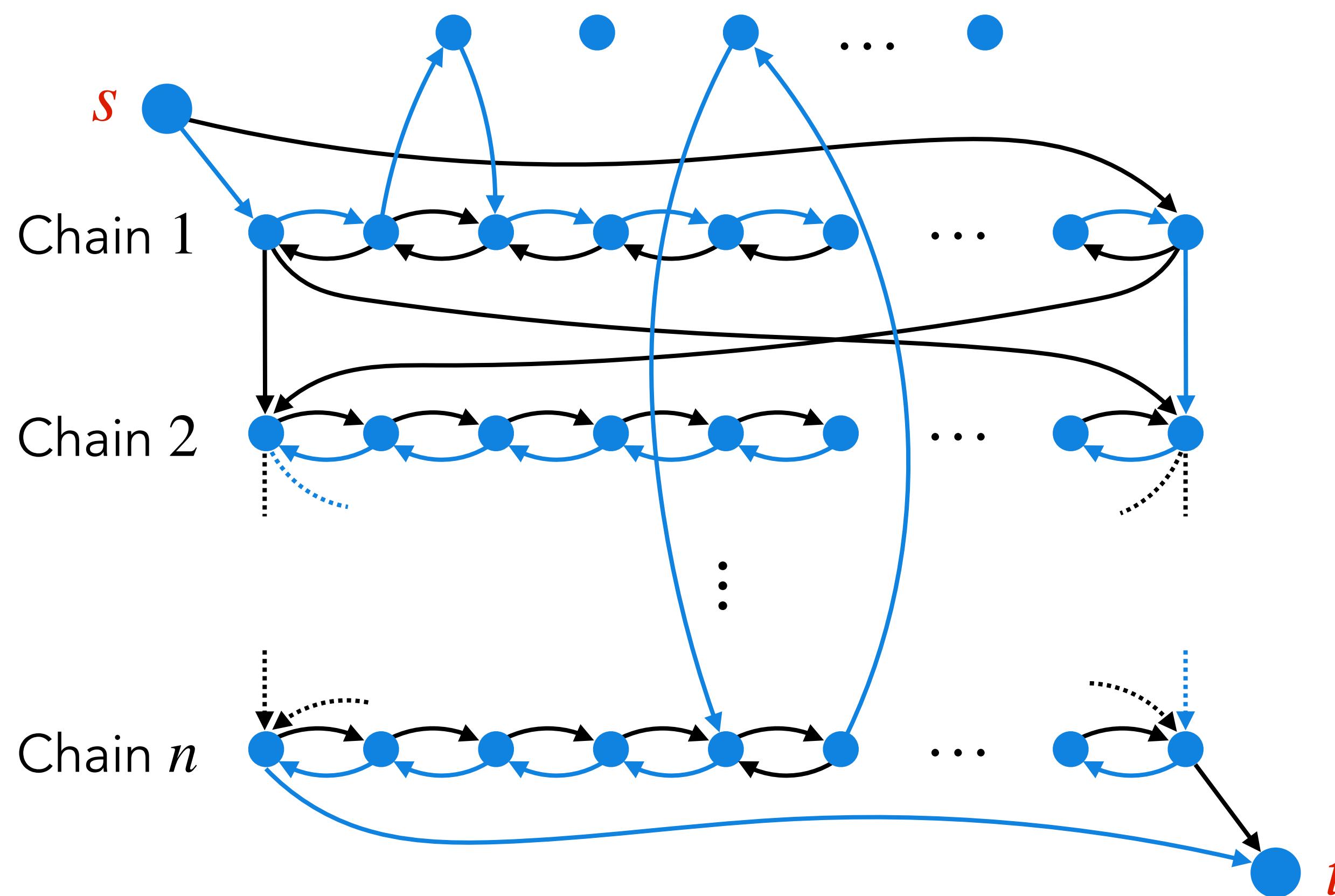


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.
- Satisfying assignment for ϕ :
 - $u_i = 1$, if i th chain is traversed left-to-right.
 - $u_i = 0$, if i th chain is traversed right-to-left.

$3SAT \leq_p DirHampath$

m vertices corresponding to each clause

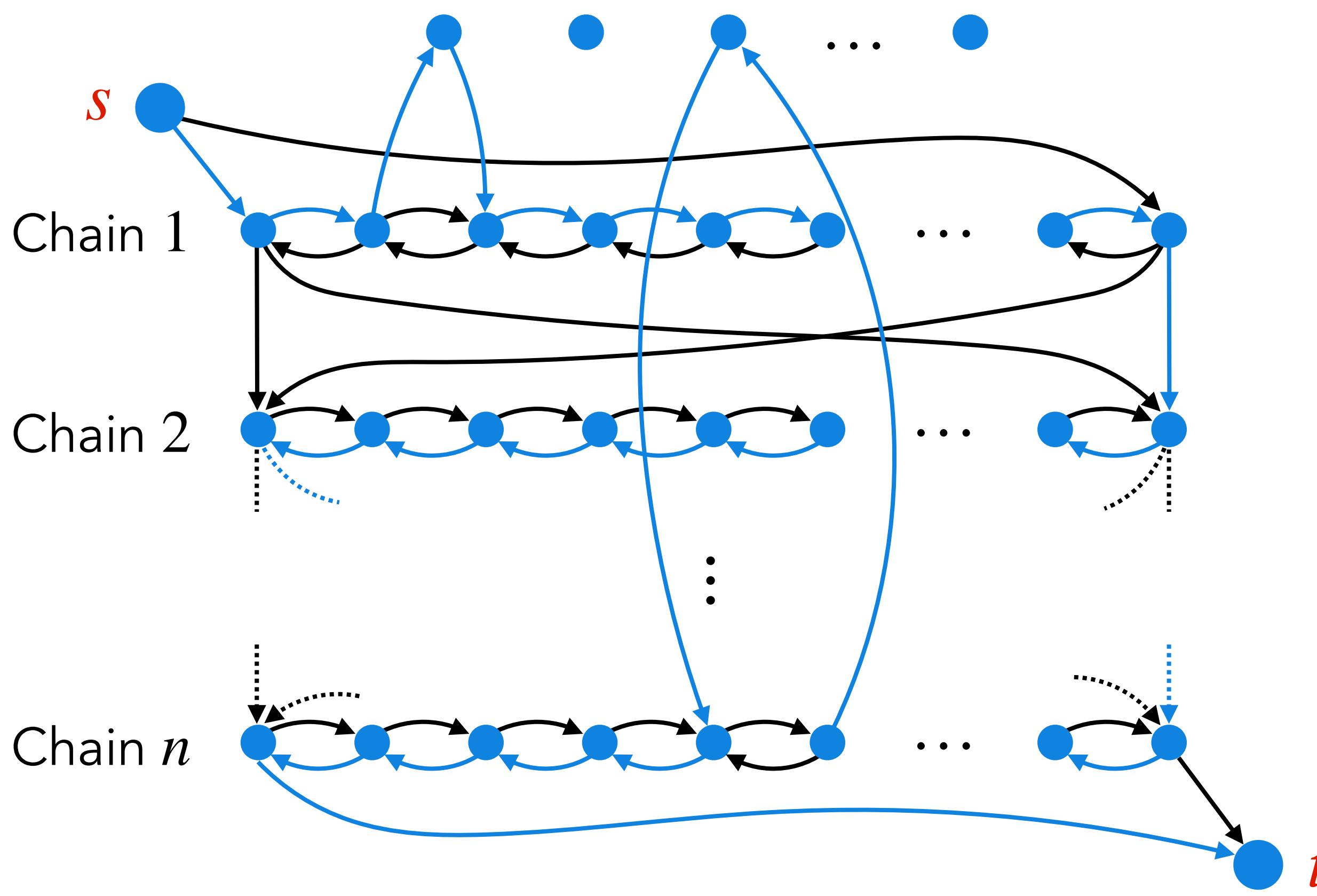


Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.
- Satisfying assignment for ϕ :
 - $u_i = 1$, if i th chain is traversed left-to-right.
 - $u_i = 0$, if i th chain is traversed right-to-left.
- Why above is a satisfying assignment?

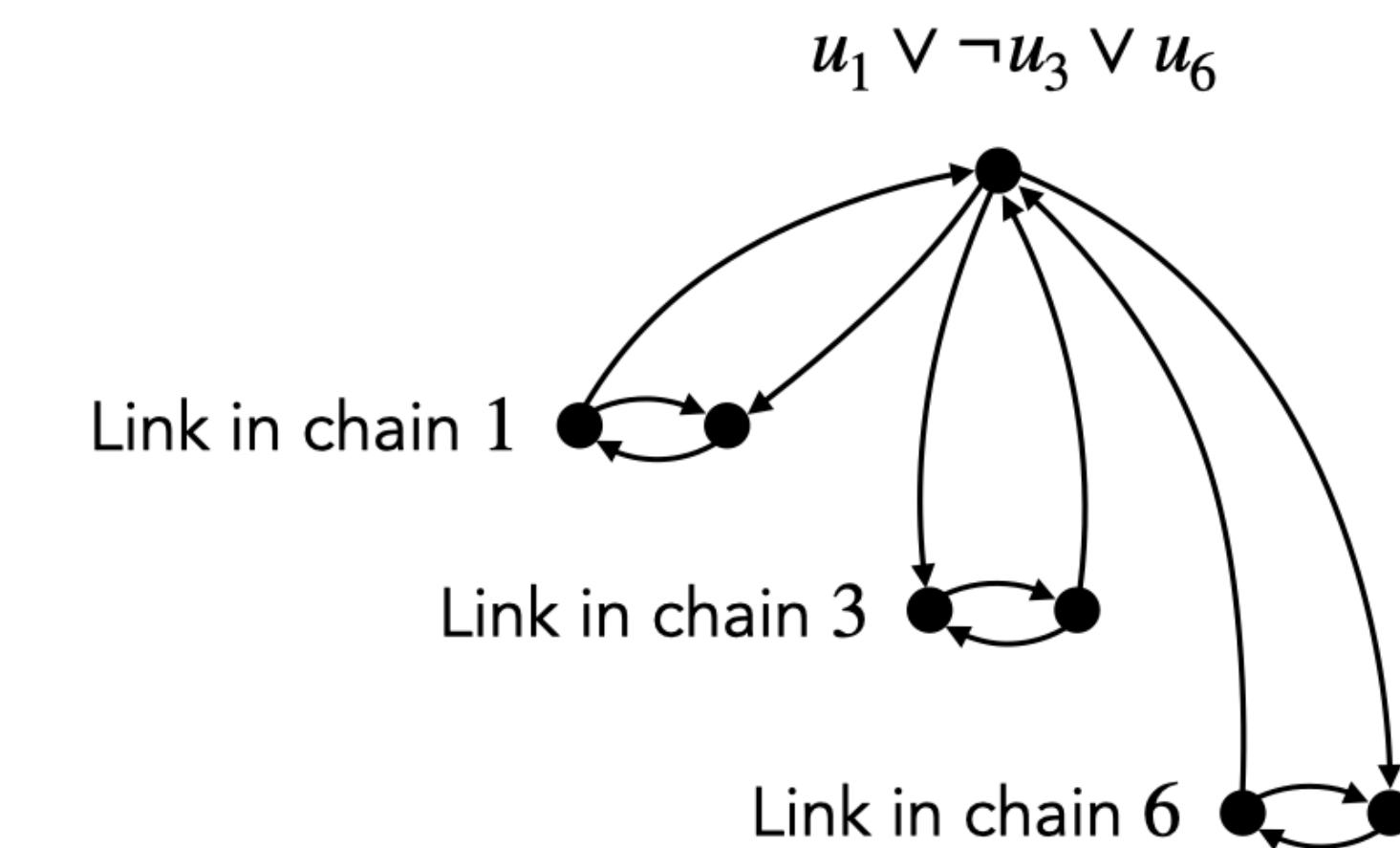
$3SAT \leq_p DirHampath$

m vertices corresponding to each clause



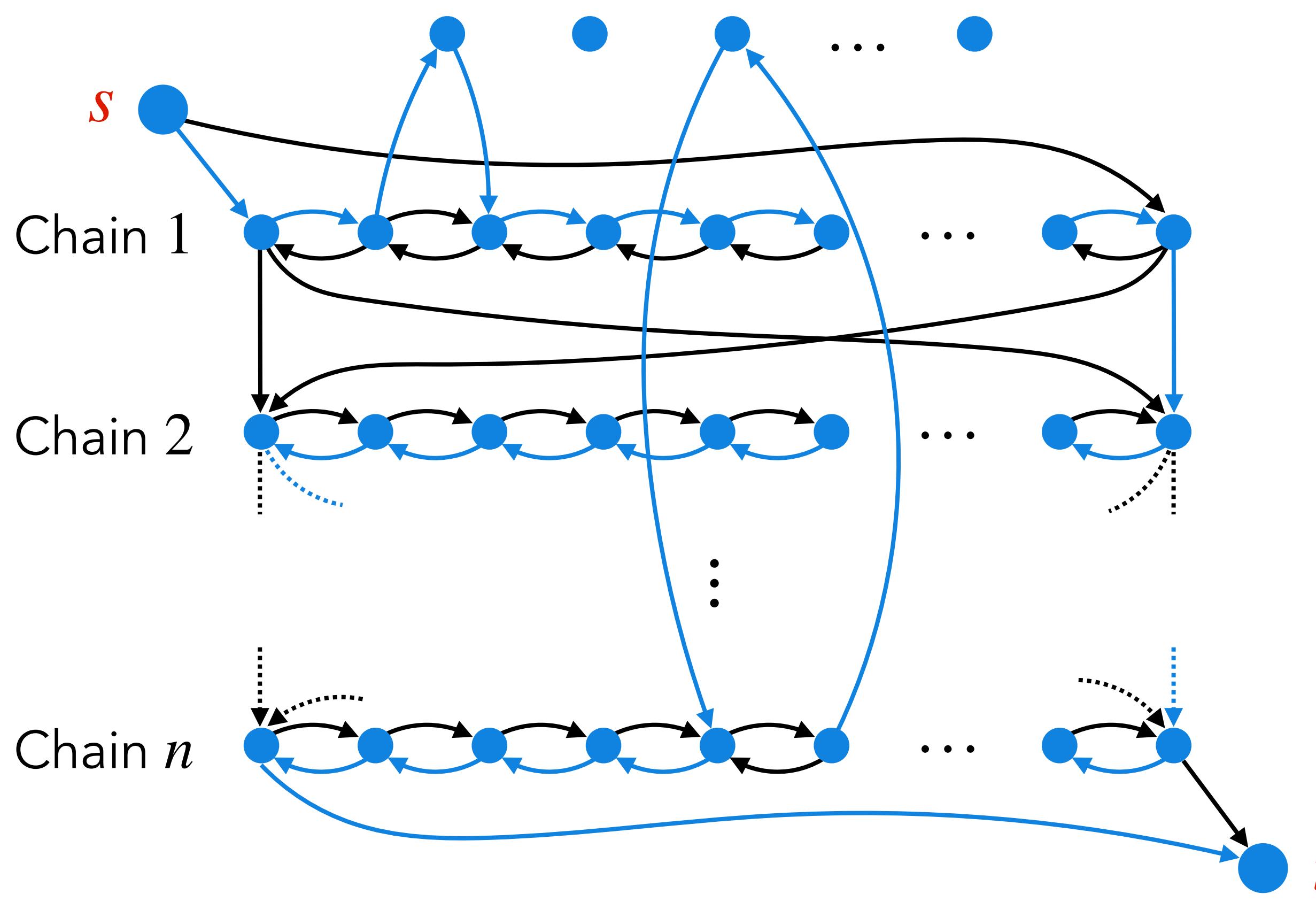
Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.
- Satisfying assignment for ϕ :
 - $u_i = 1$, if i th chain is traversed left-to-right.
 - $u_i = 0$, if i th chain is traversed right-to-left.
- Why above is a satisfying assignment?



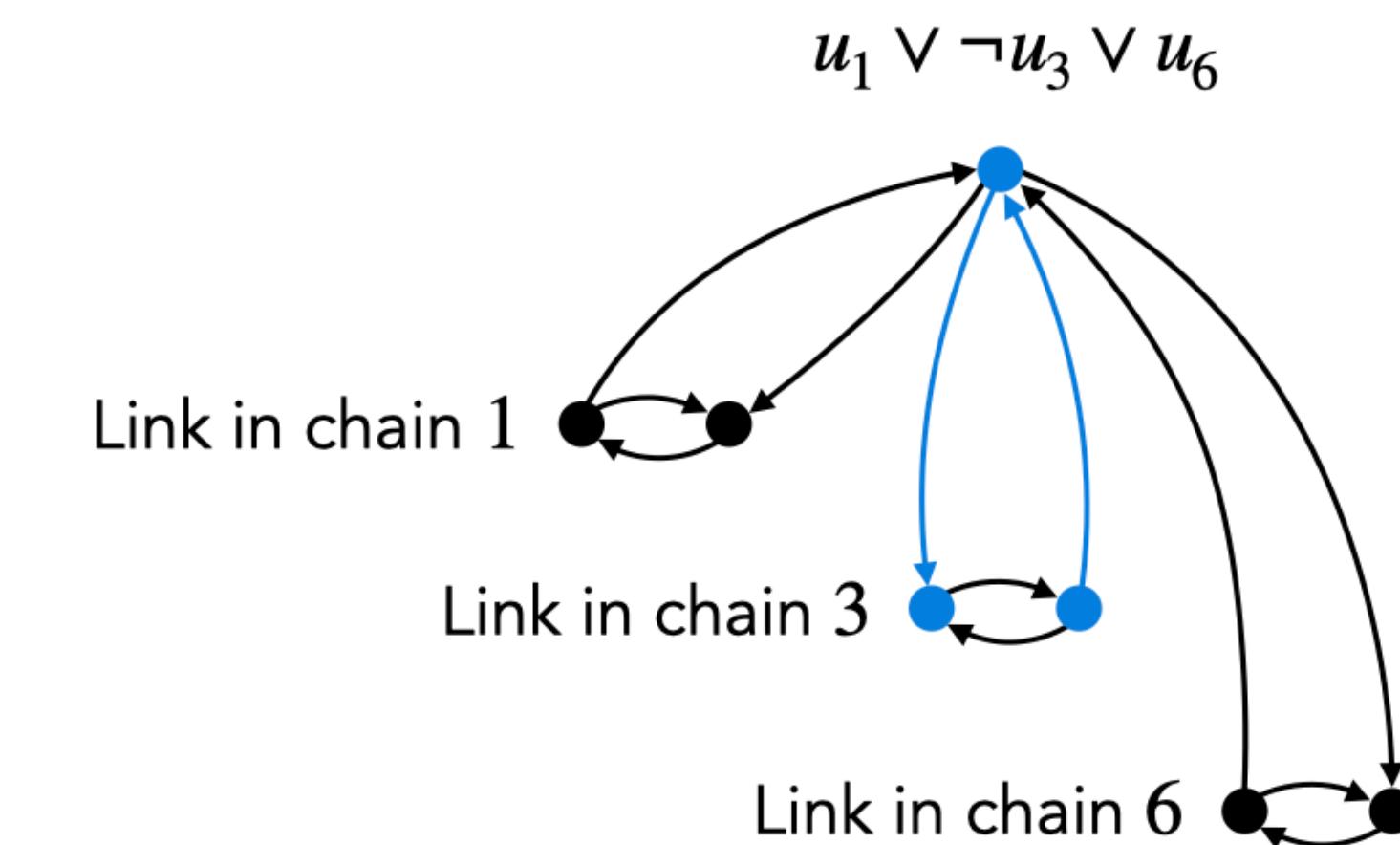
$3SAT \leq_p DirHampath$

m vertices corresponding to each clause



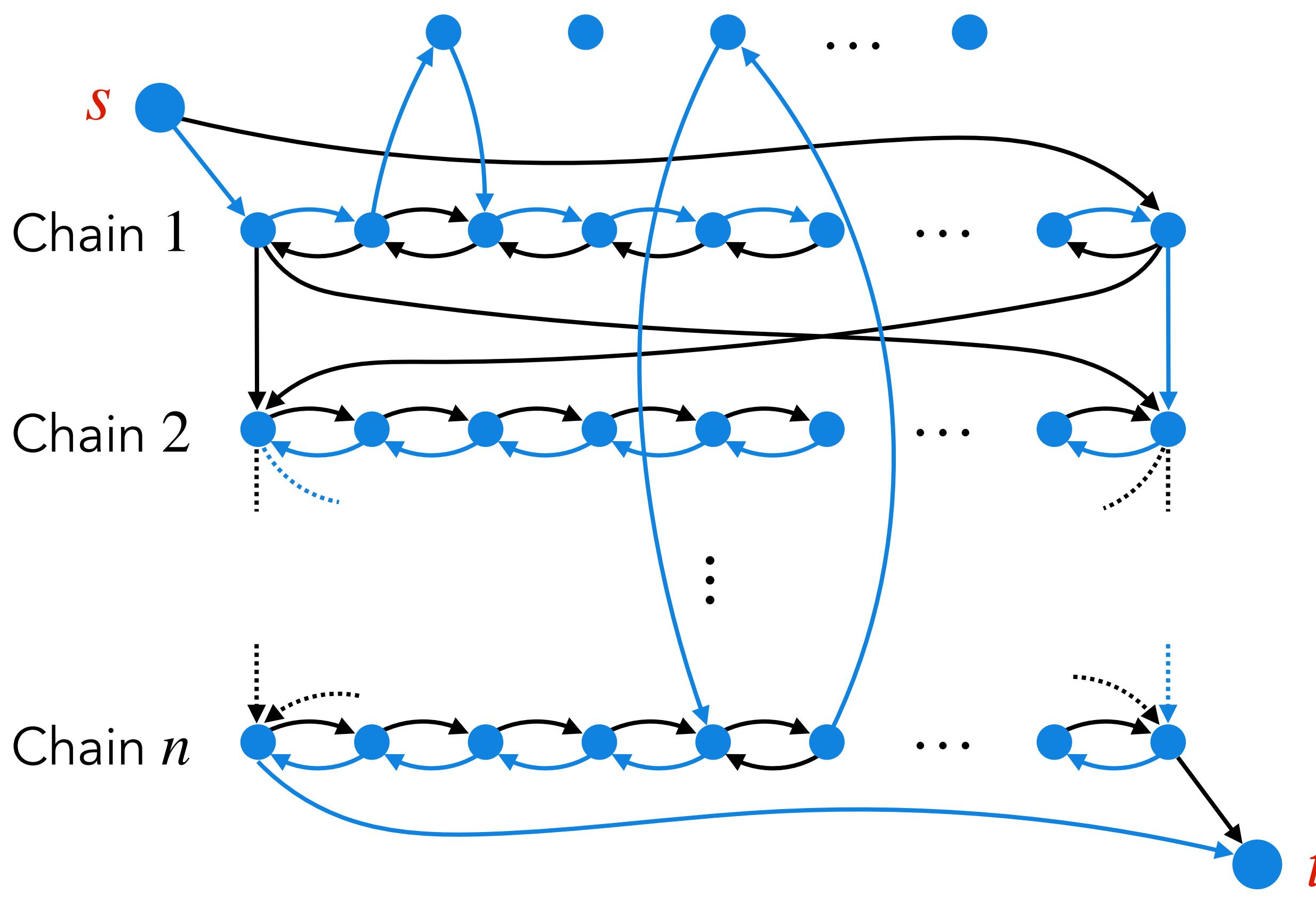
Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.
- Satisfying assignment for ϕ :
 - $u_i = 1$, if i th chain is traversed left-to-right.
 - $u_i = 0$, if i th chain is traversed right-to-left.
- Why above is a satisfying assignment?



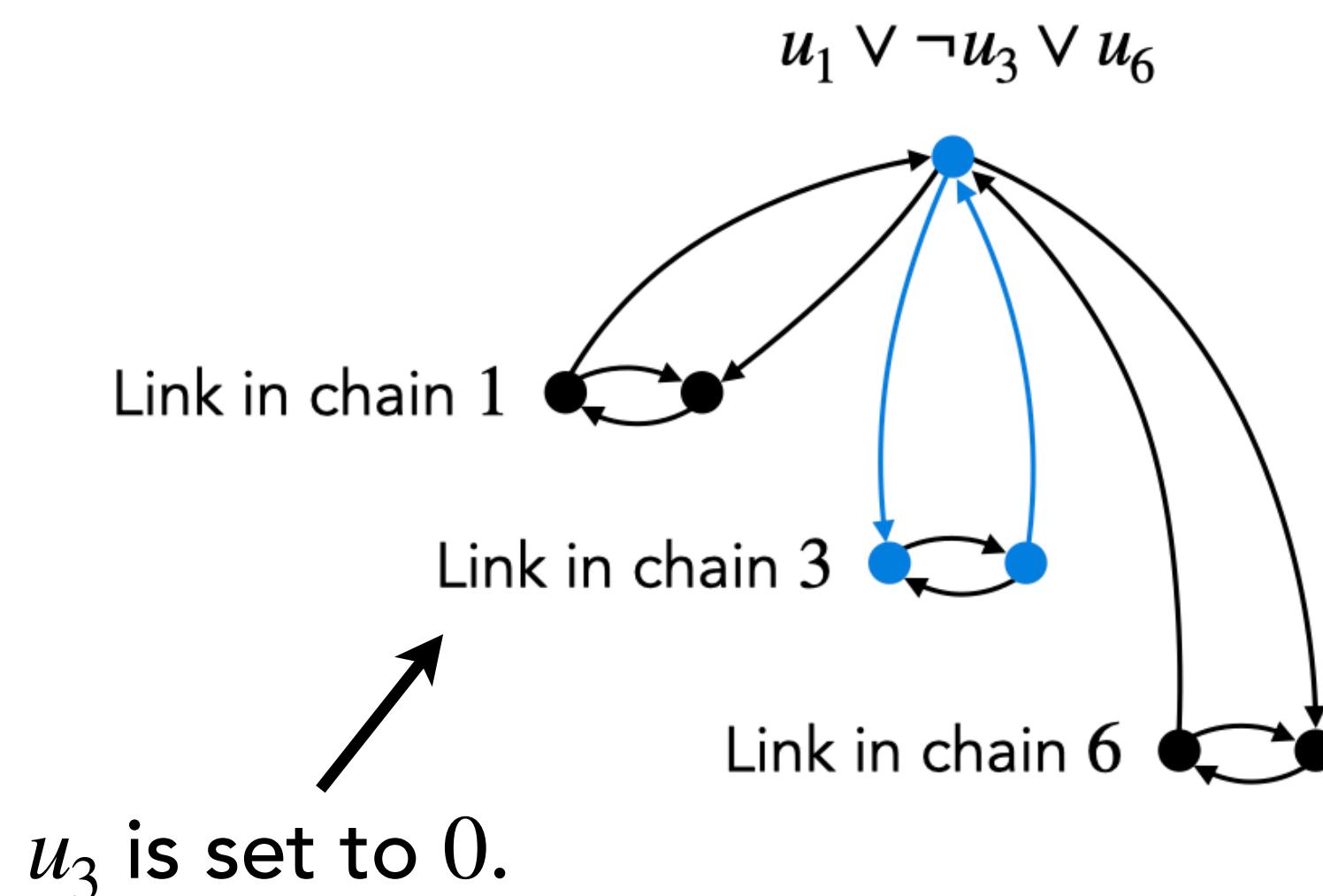
$3SAT \leq_p DirHampath$

m vertices corresponding to each clause



Correctness of Reduction (\Leftarrow):

- Suppose there exists a hamiltonian st -path.
- Satisfying assignment for ϕ :
 - $u_i = 1$, if i th chain is traversed left-to-right.
 - $u_i = 0$, if i th chain is traversed right-to-left.
- Why above is a satisfying assignment?



DirHampath \leq_p *Hampath*

DirHamPath \leq_p *HamPath*

- *DirHamPath* = { $\langle G, s, t \rangle$ | G is a directed graph with a hamiltonian path from s to t }
- *HamPath* = { $\langle G', s', t' \rangle$ | G' is an undirected graph with a hamiltonian path from s' to t' }

$\text{DirHamPath} \leq_p \text{HamPath}$

- $\text{DirHamPath} = \{\langle G, s, t \rangle \mid G \text{ is a directed graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{HamPath} = \{\langle G', s', t' \rangle \mid G' \text{ is an undirected graph with a hamiltonian path from } s' \text{ to } t'\}$

Goal: Convert $\langle G, s, t \rangle$ into $\langle G', s', t' \rangle$ in polytime, such that G has a hamiltonian path from s to t

$\text{DirHamPath} \leq_p \text{HamPath}$

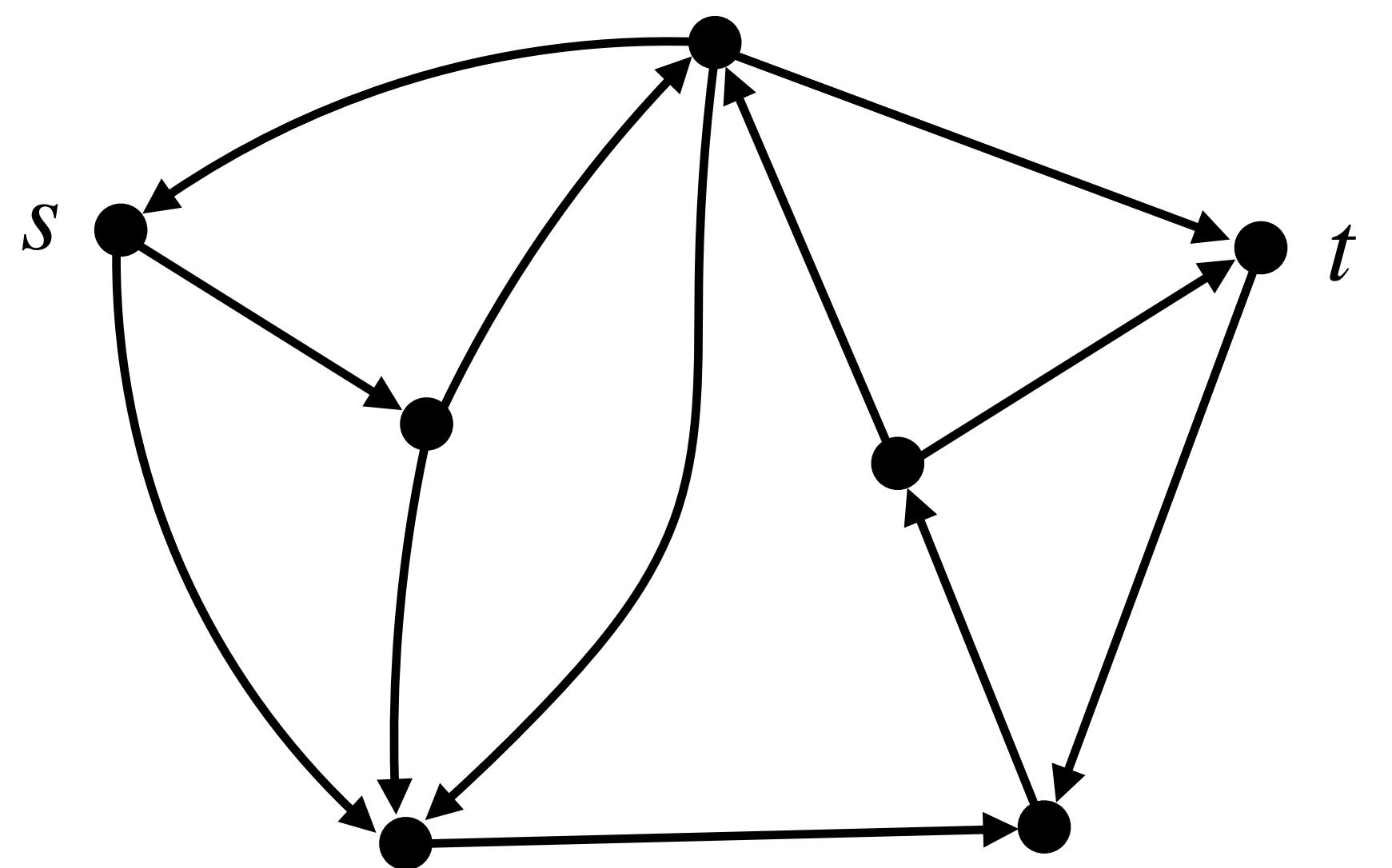
- $\text{DirHamPath} = \{\langle G, s, t \rangle \mid G \text{ is a directed graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{HamPath} = \{\langle G', s', t' \rangle \mid G' \text{ is an undirected graph with a hamiltonian path from } s' \text{ to } t'\}$

Goal: Convert $\langle G, s, t \rangle$ into $\langle G', s', t' \rangle$ in polytime, such that G has a hamiltonian path from s to t if and only if G' has a hamiltonian path from s' to t' .

DirHampath \leq_p *Hampath*

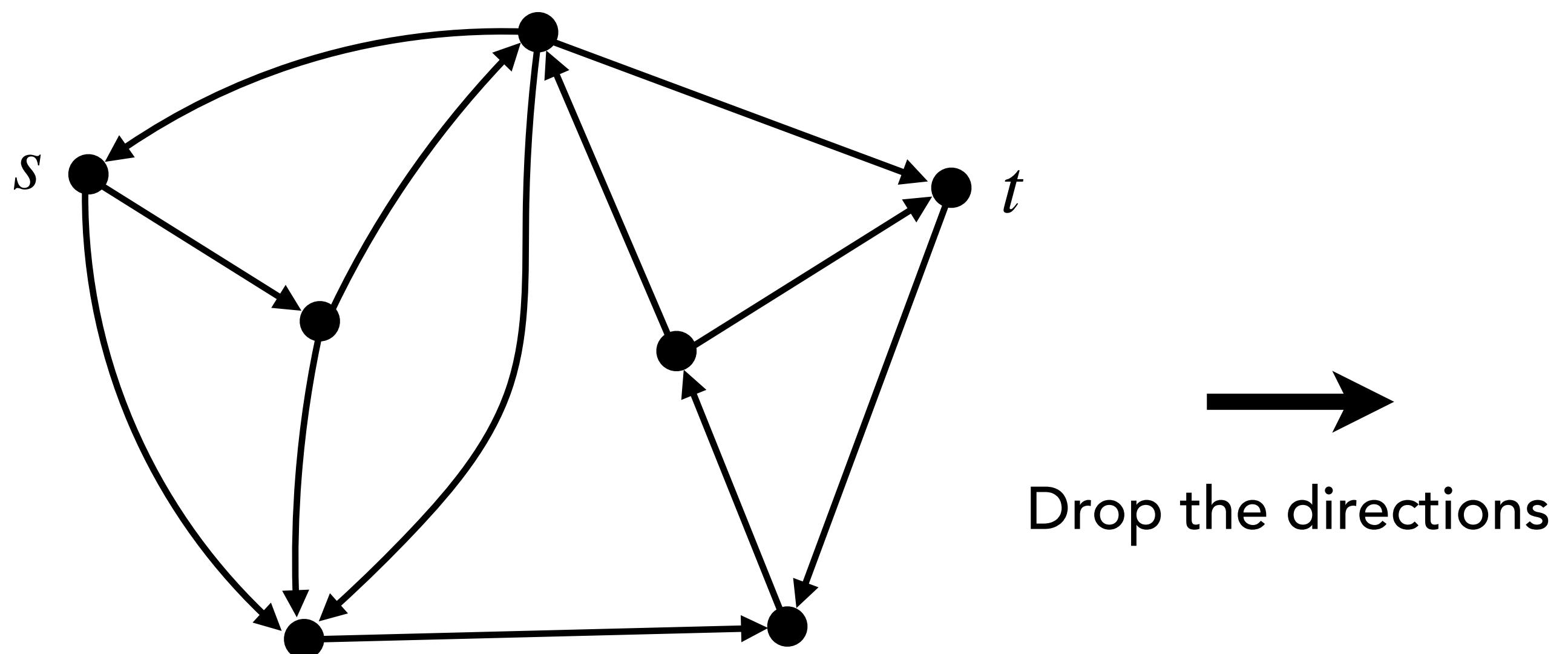
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



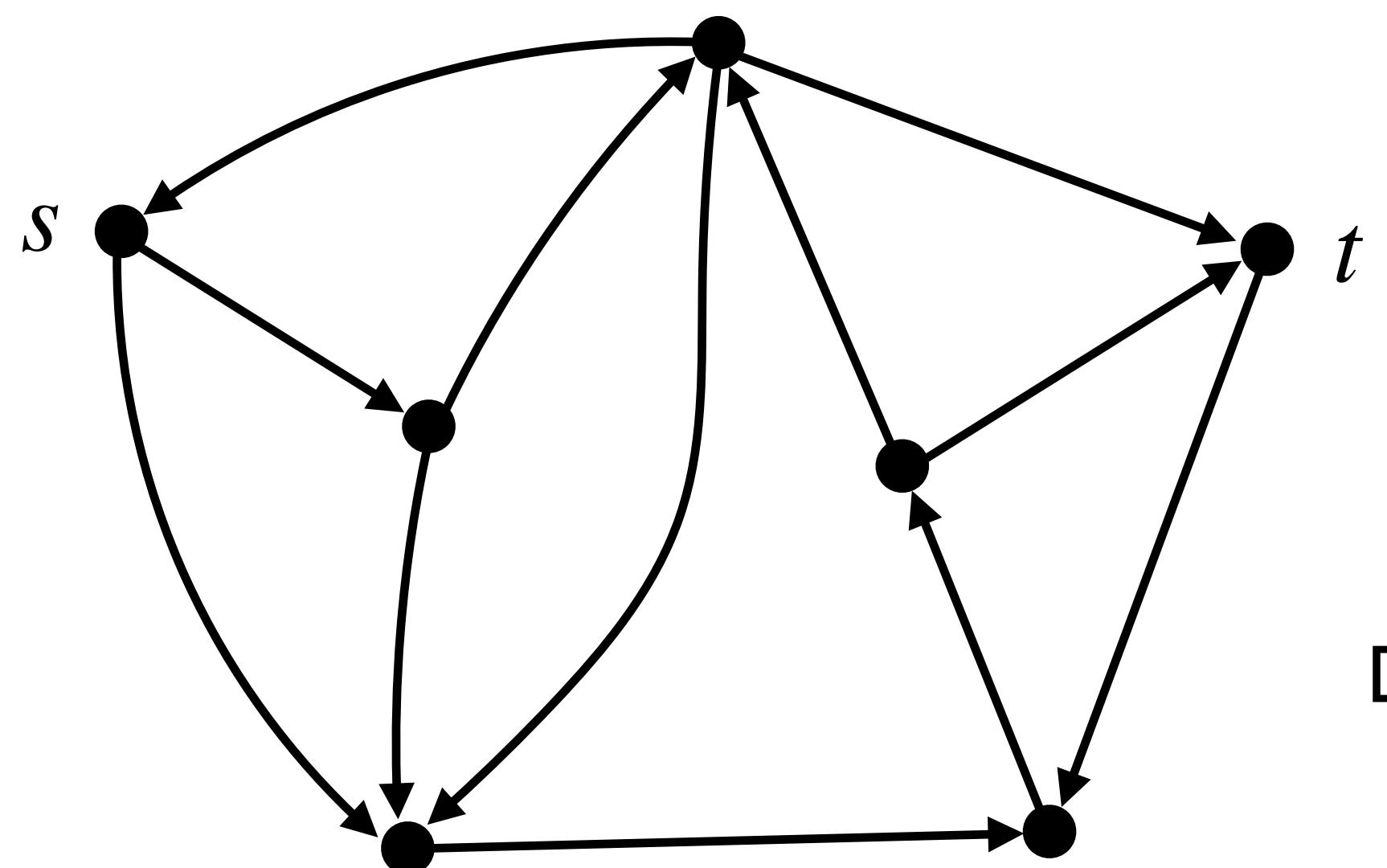
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

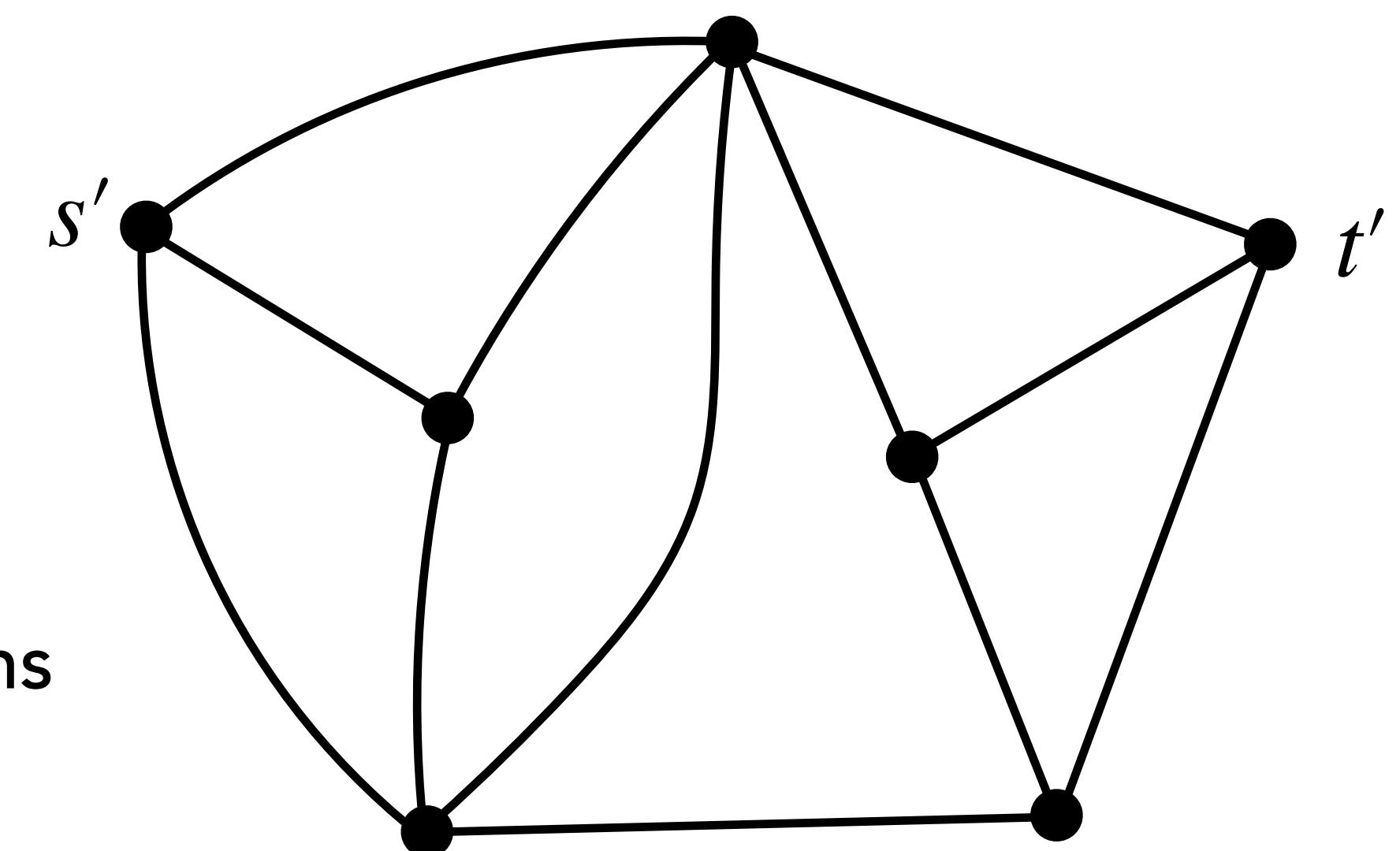


$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

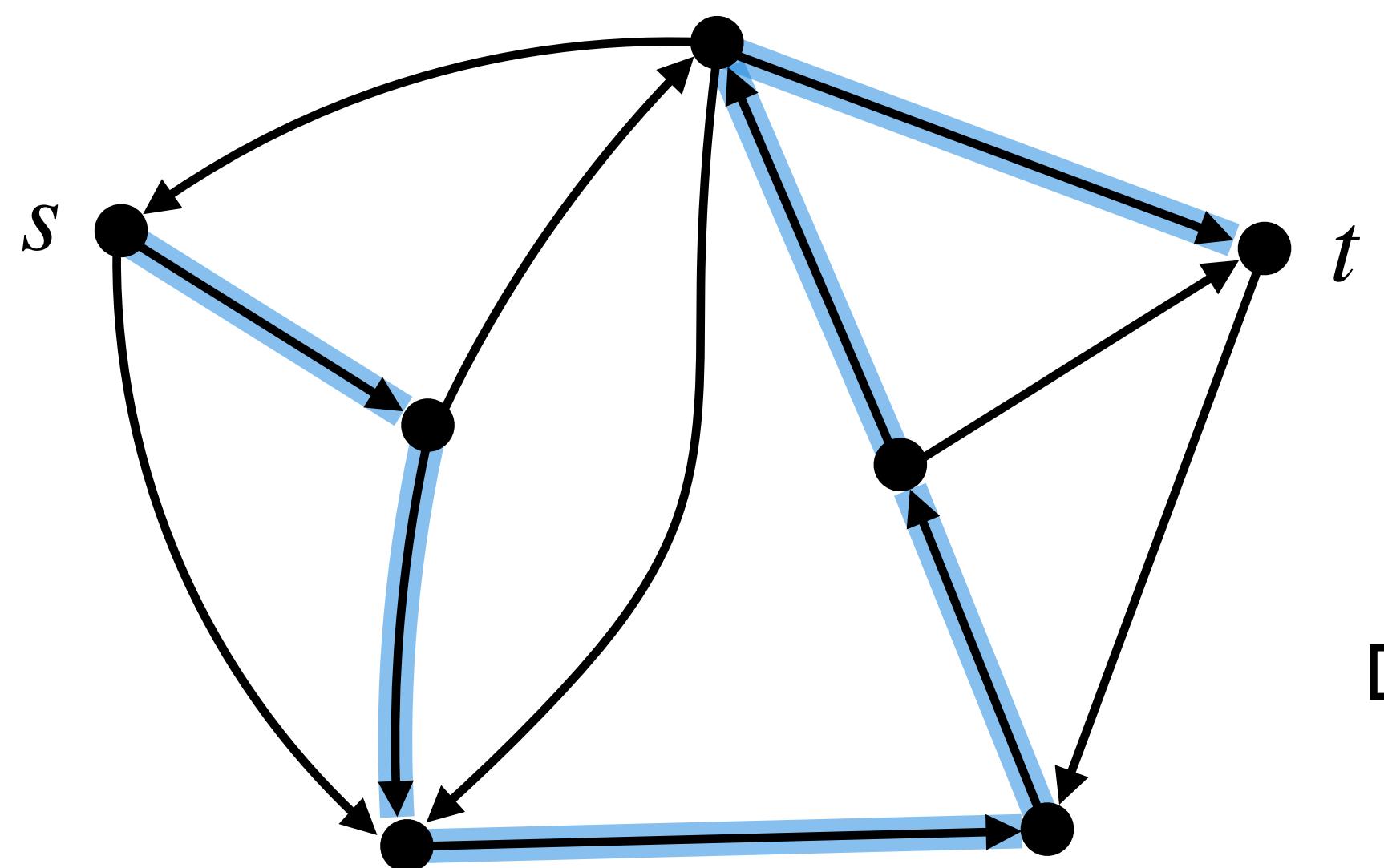


Drop the directions

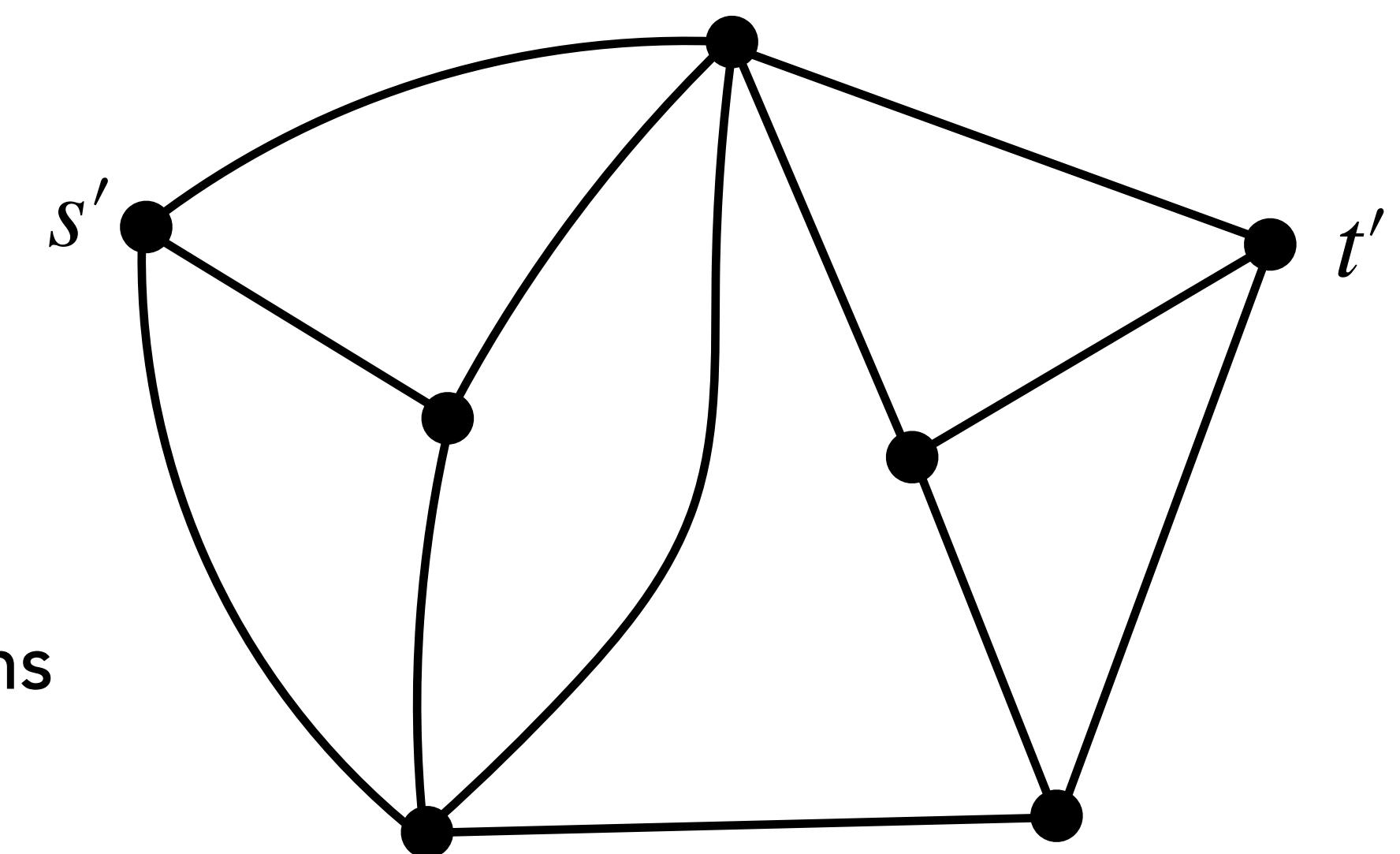


$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

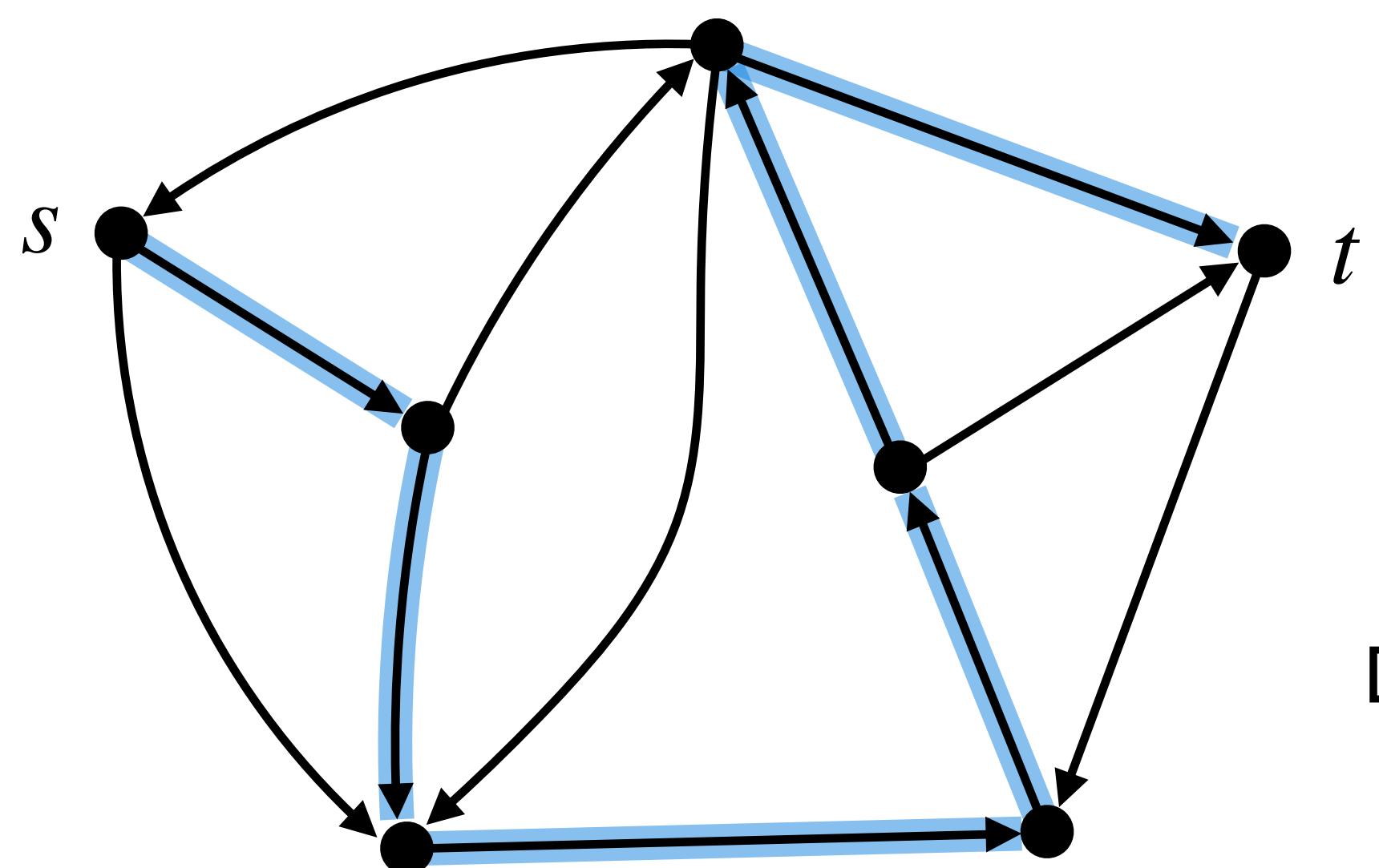


Drop the directions

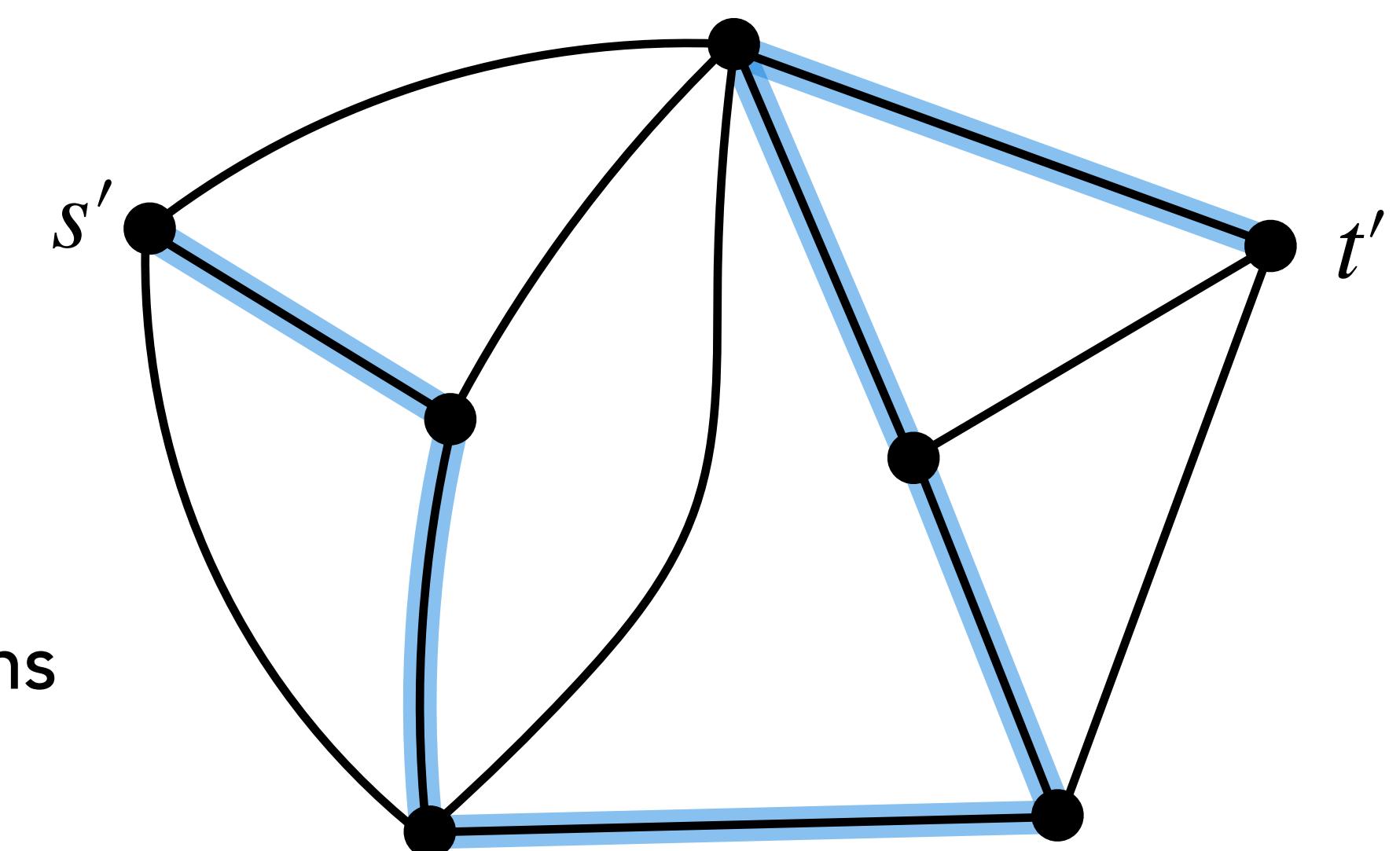


$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

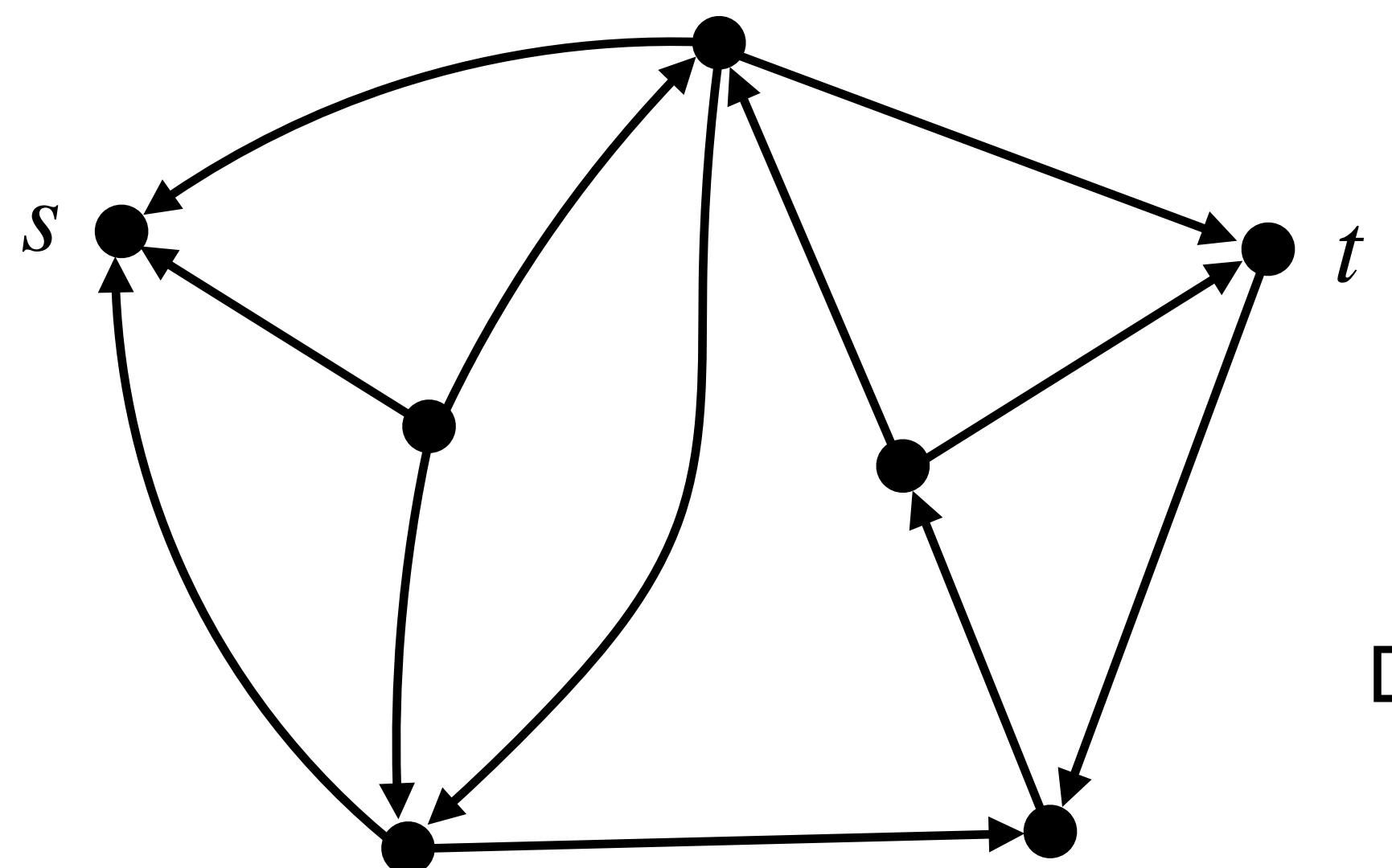


Drop the directions

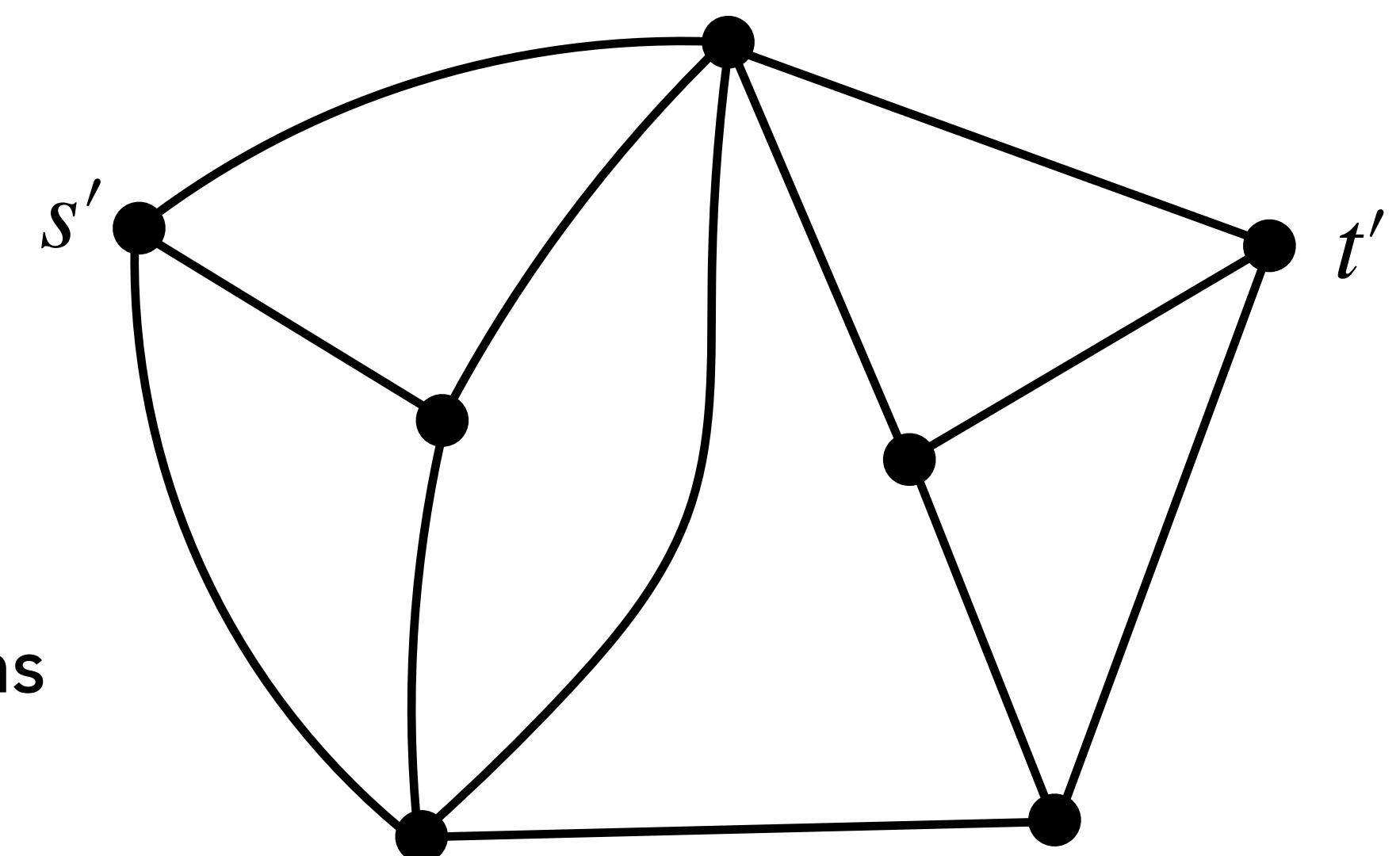


$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

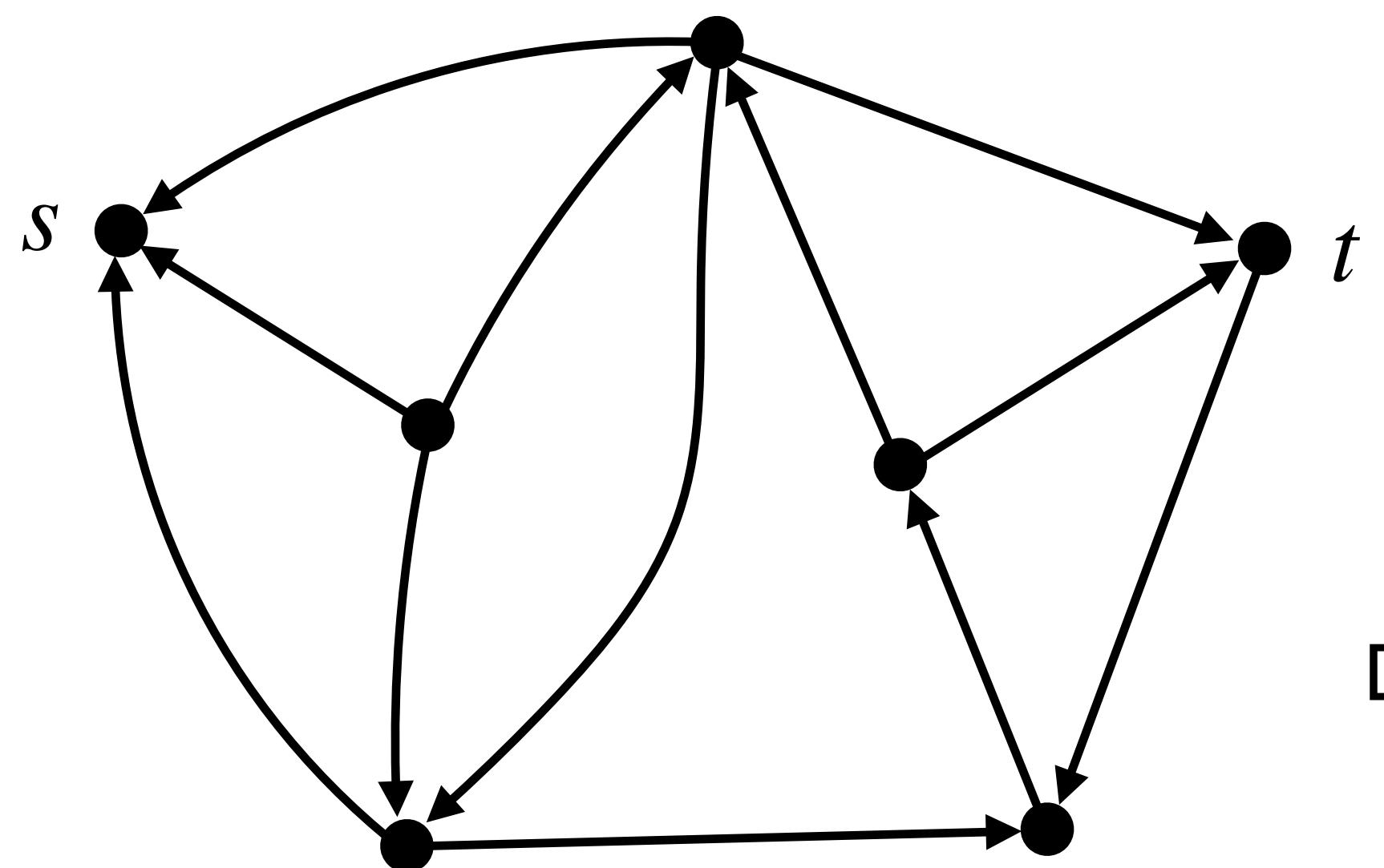


Drop the directions

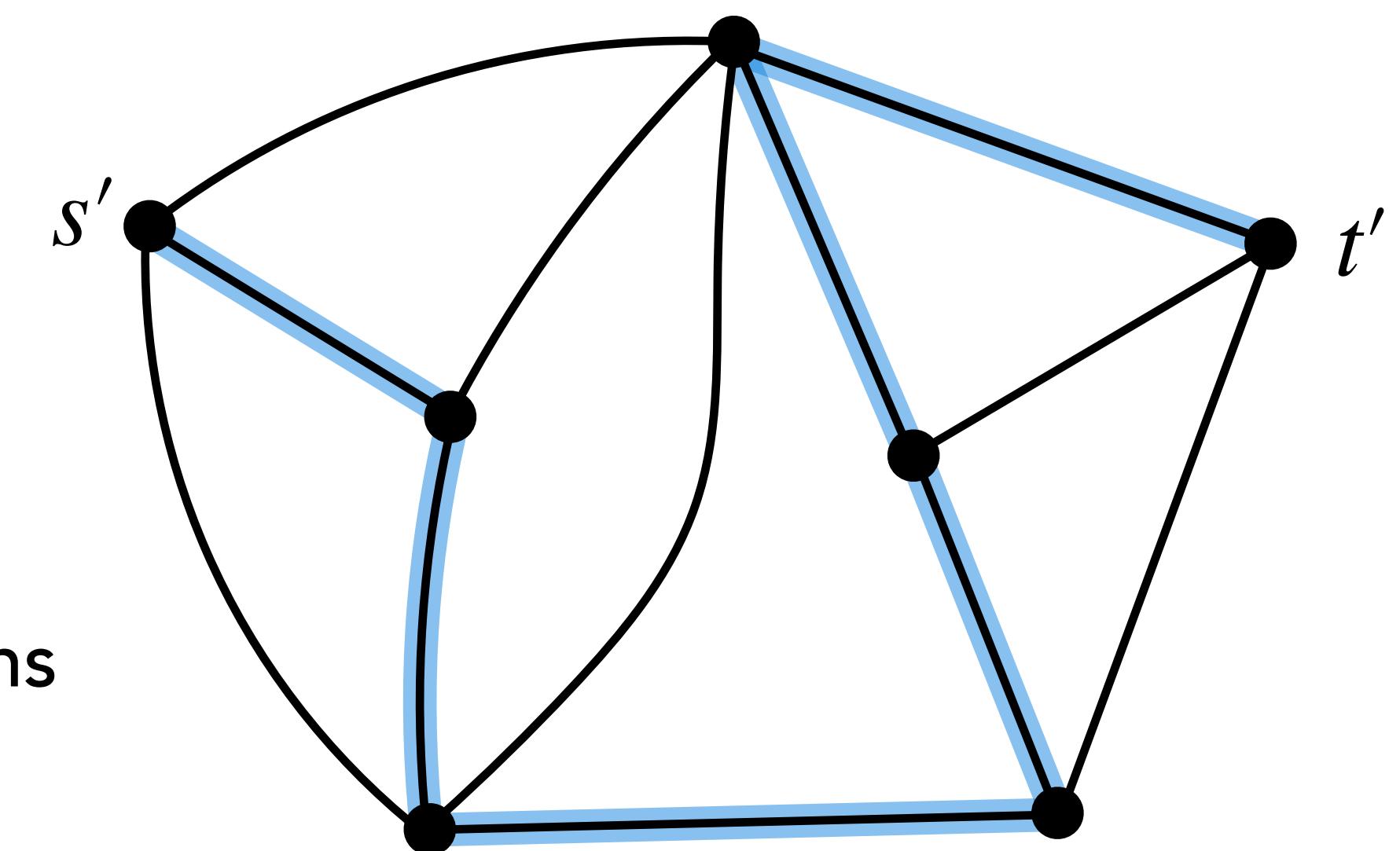


$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



Drop the directions



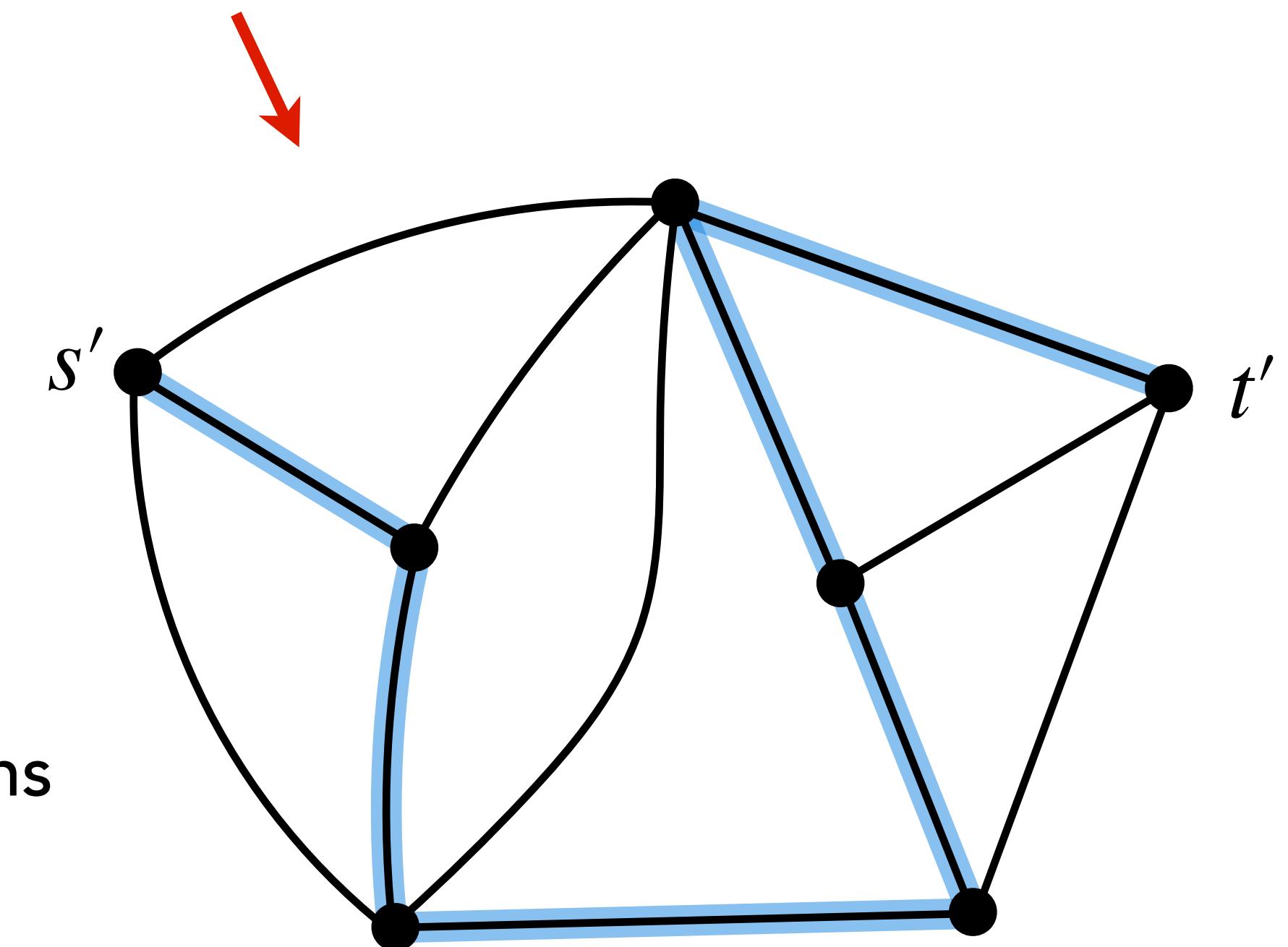
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

No hamiltonian st -path in G , but a hamiltonian $s't'$ -path in G' .



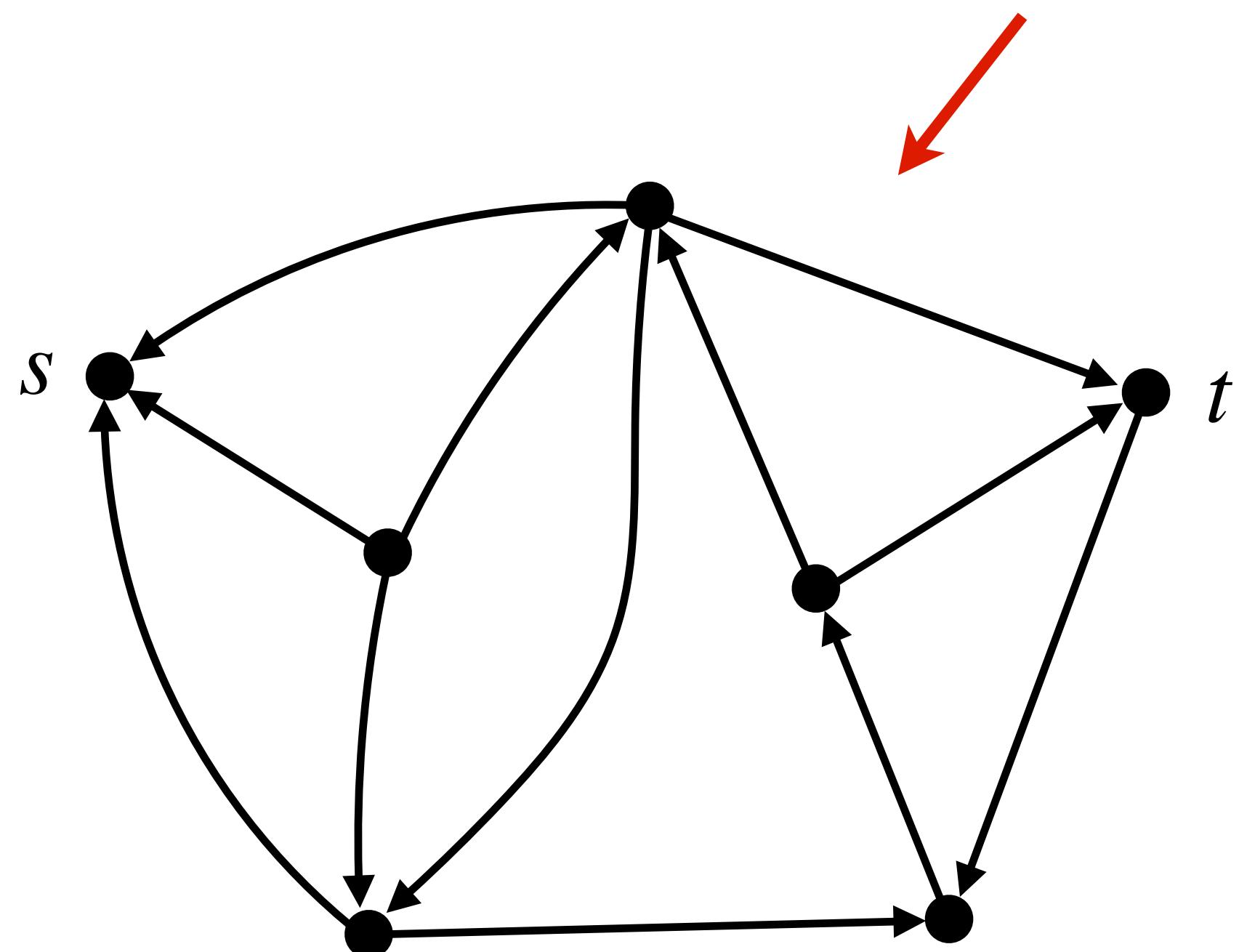
Drop the directions



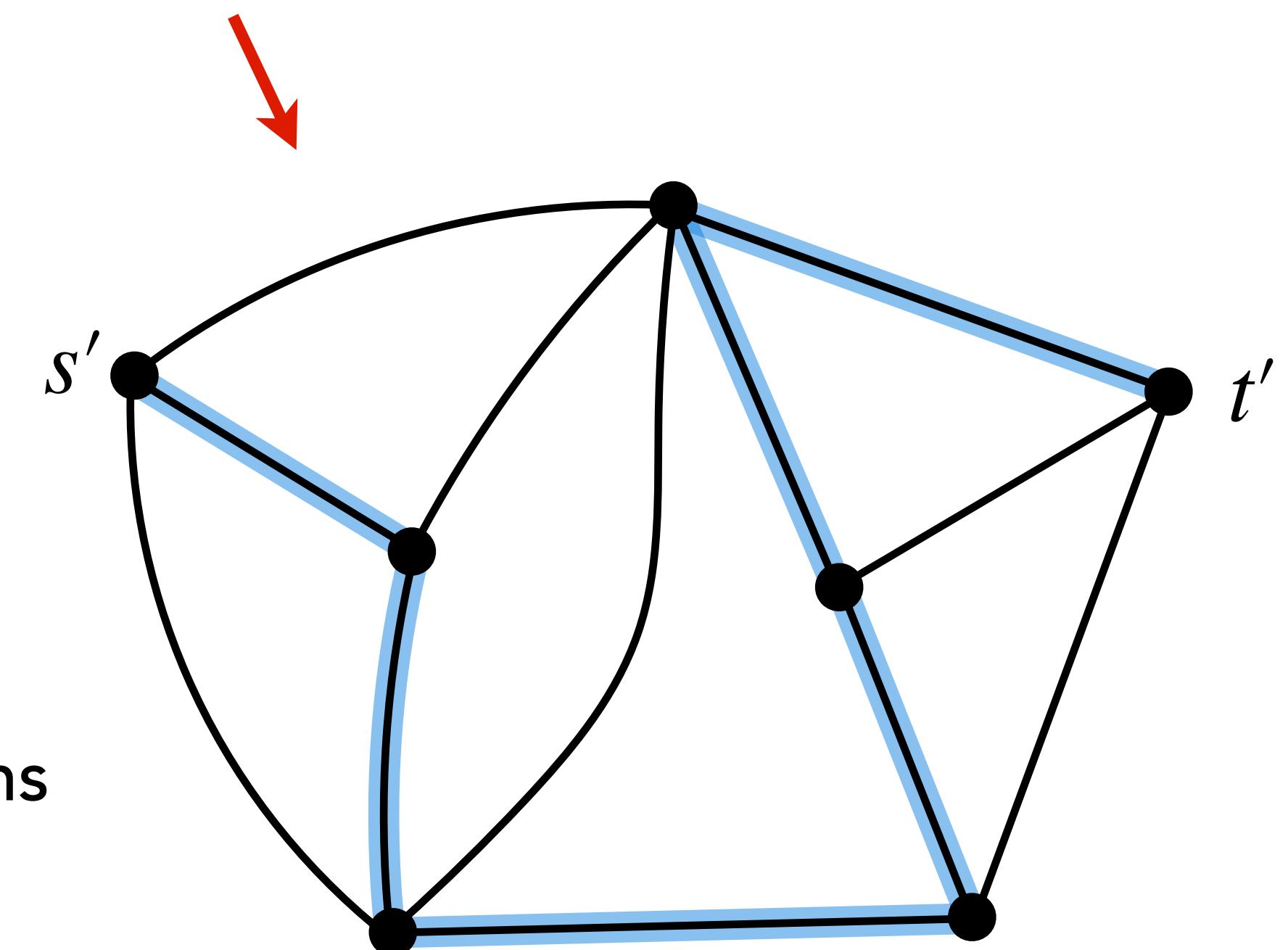
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

Reduction should enable us to find a similar
hamiltonian st -path in G w.r.t a hamiltonian $s't'$ -path in G' .



Drop the directions

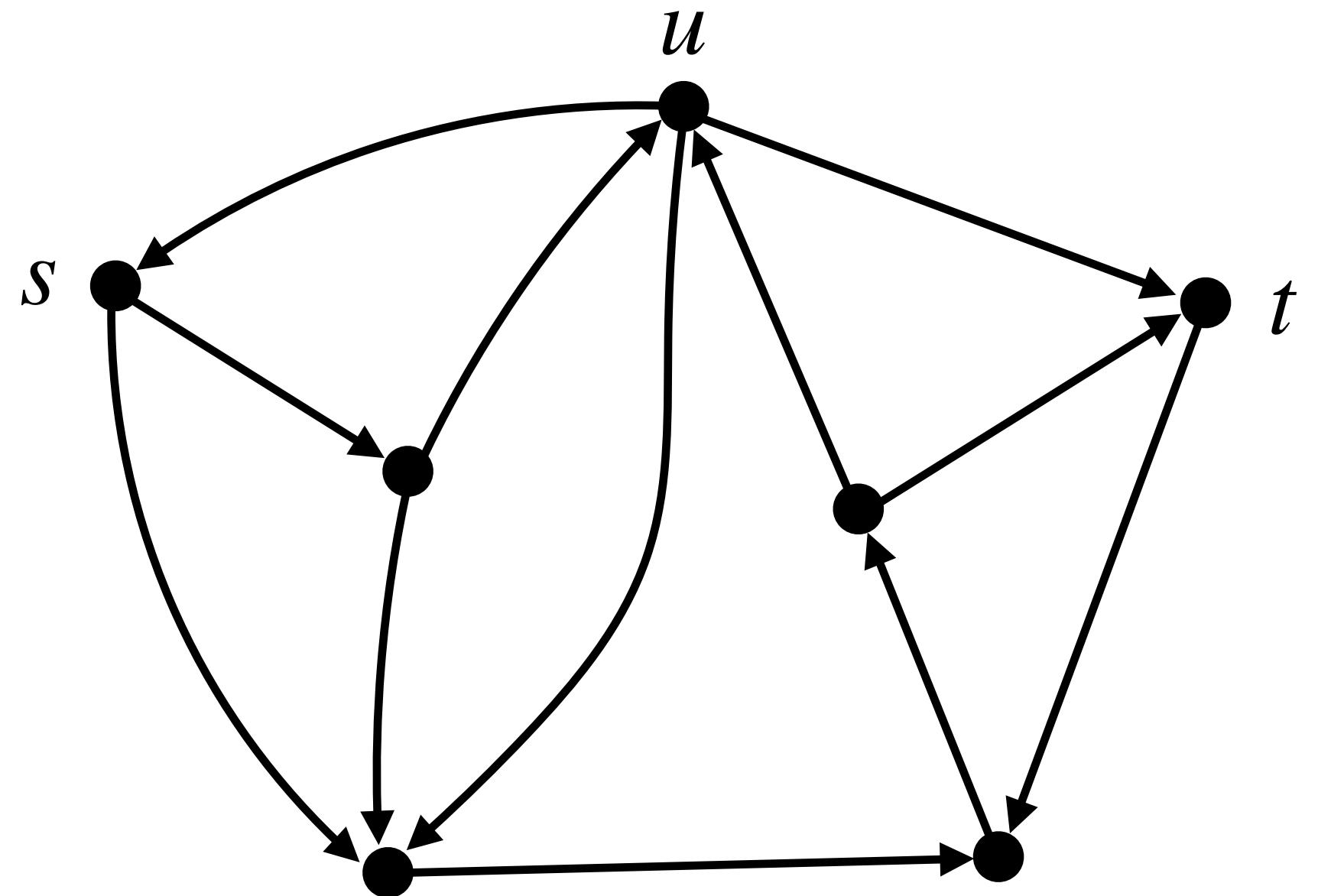


DirHampath \leq_p *Hampath*

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

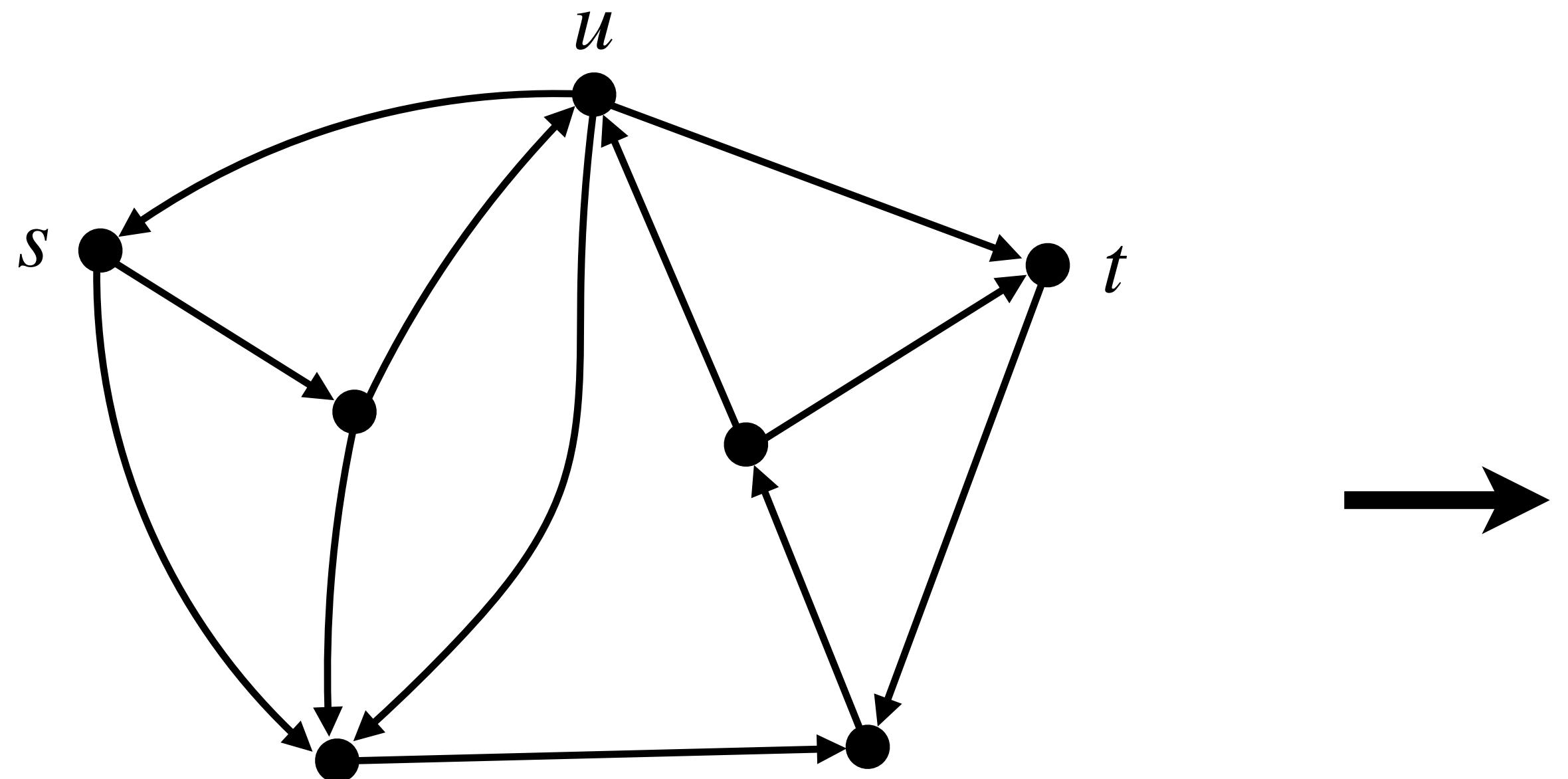
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



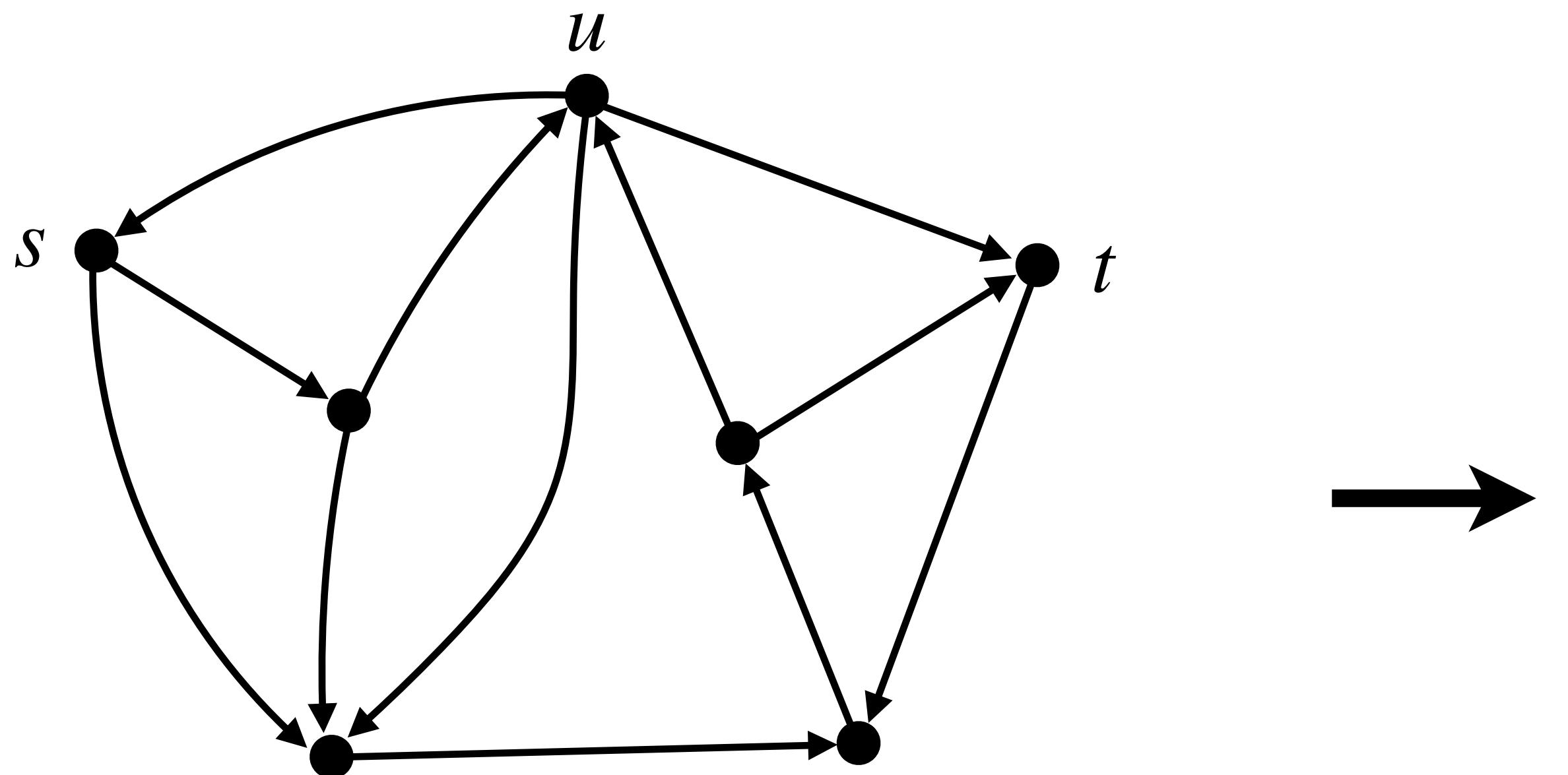
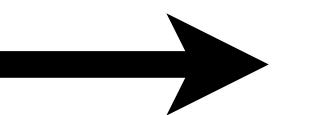
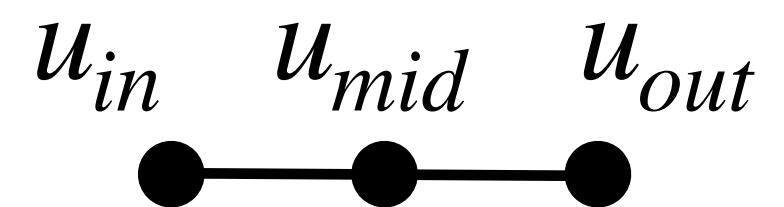
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



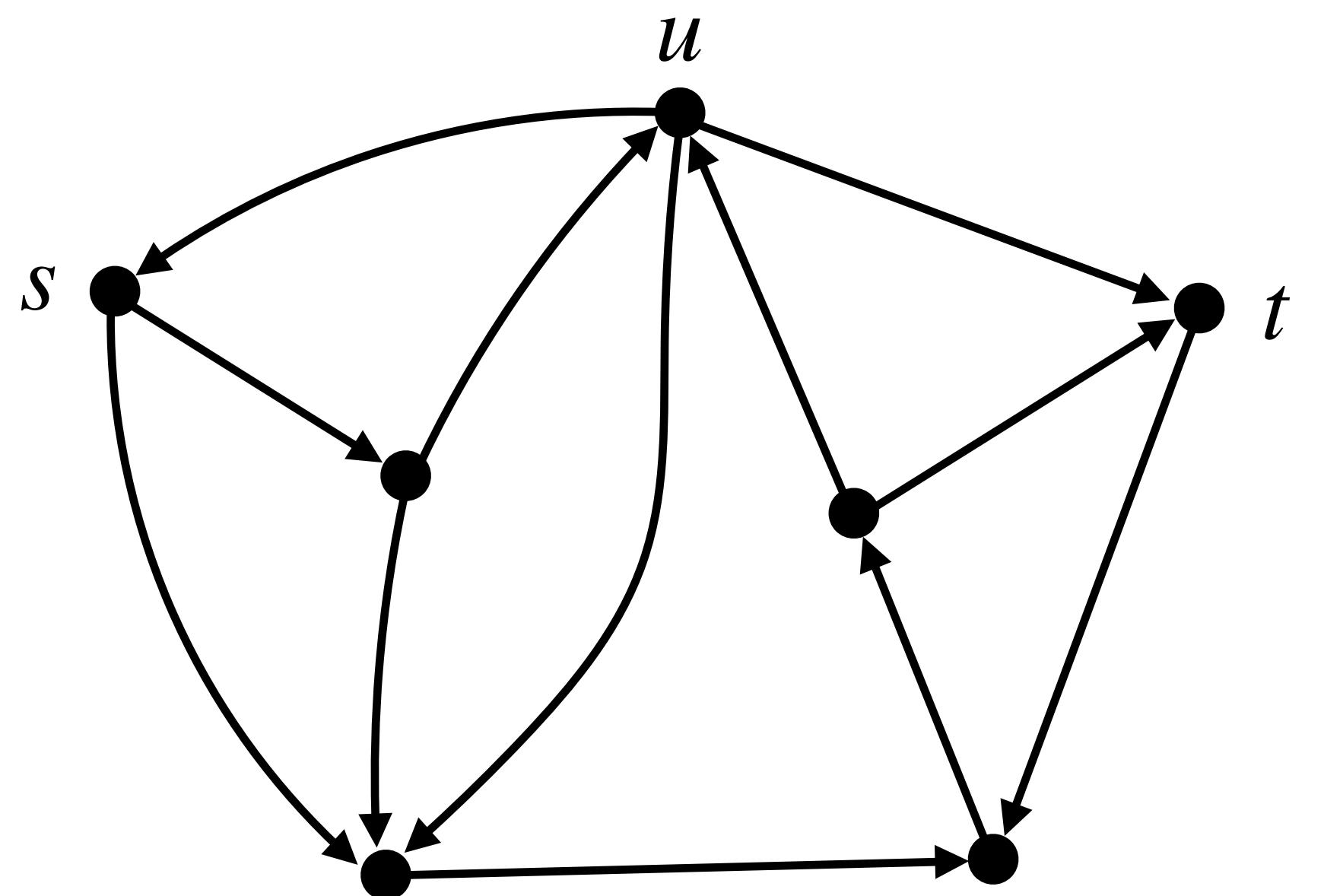
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

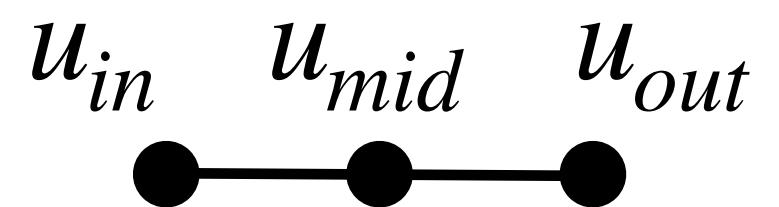


$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

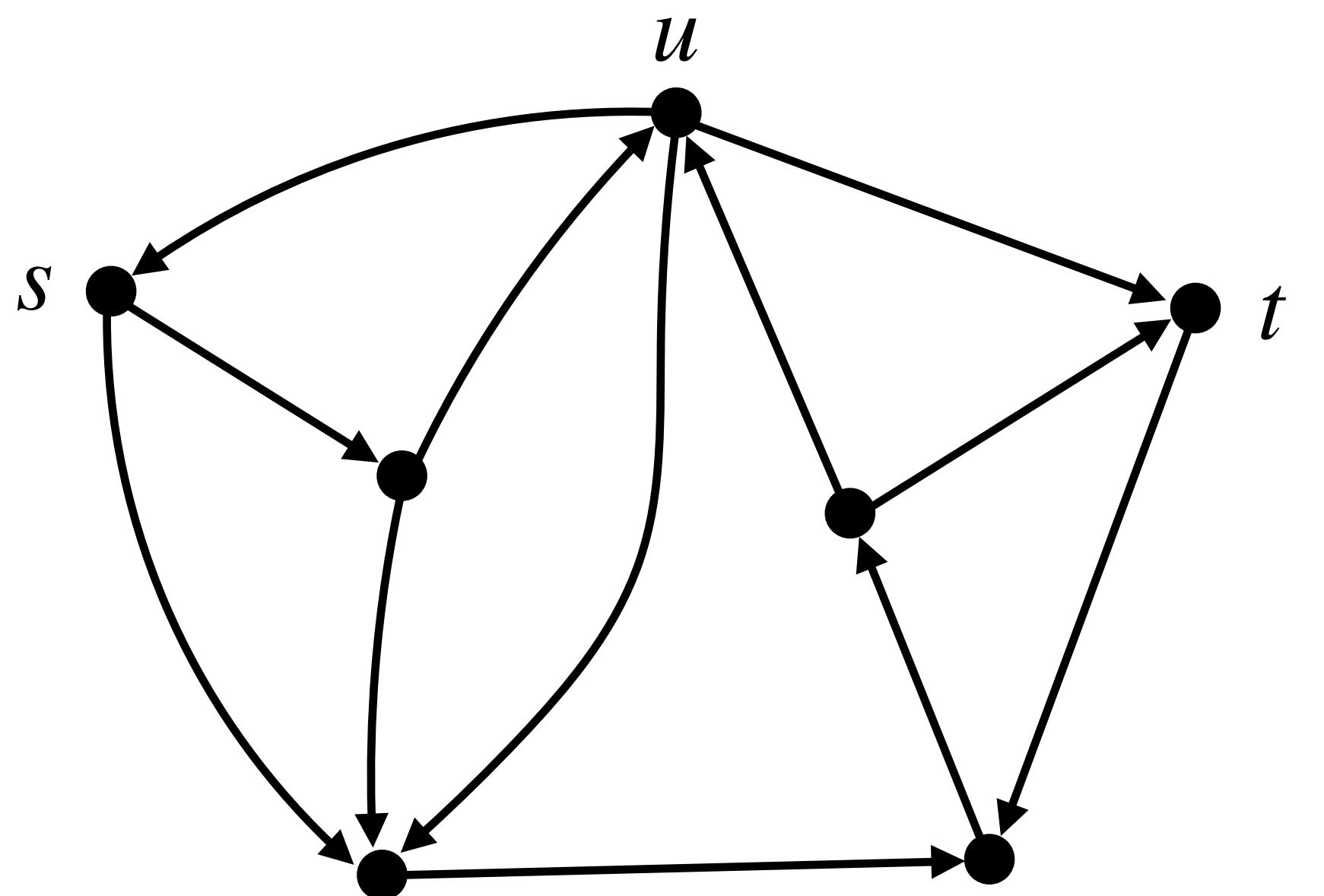
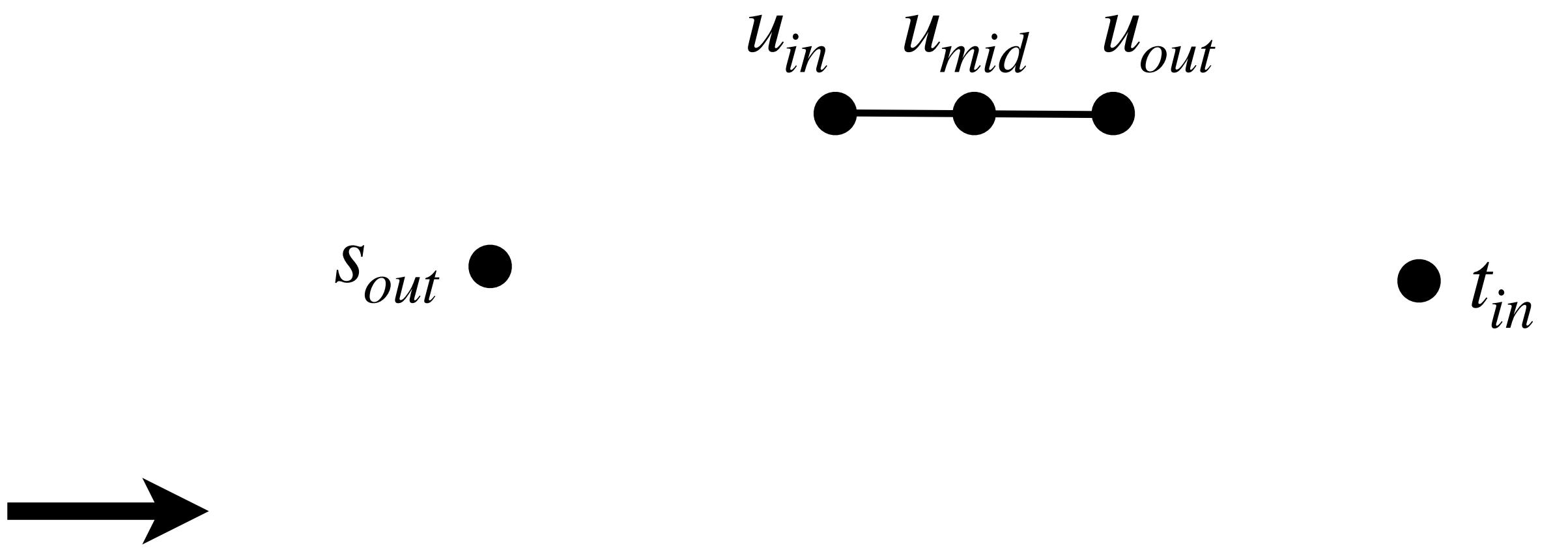


s_{out}



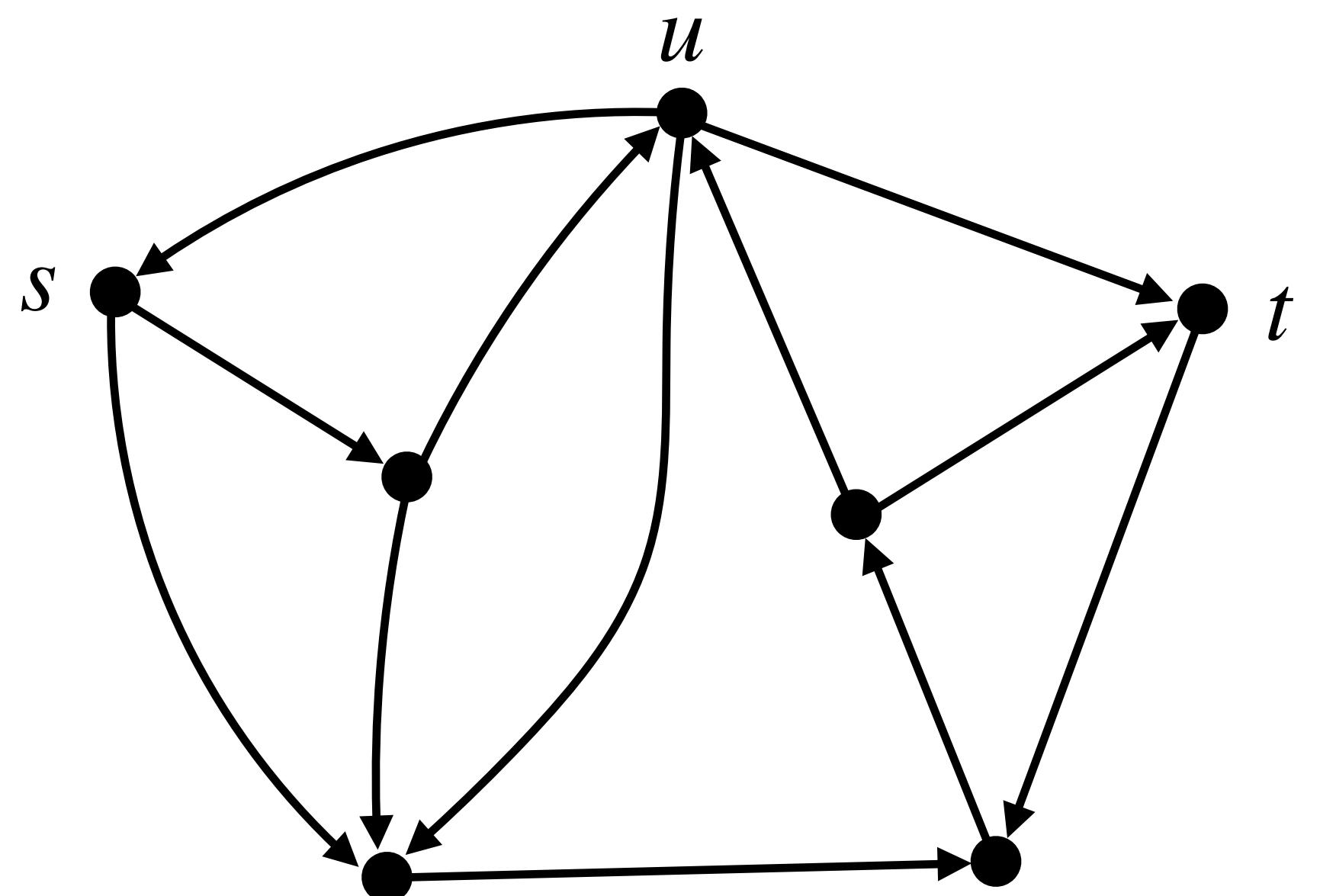
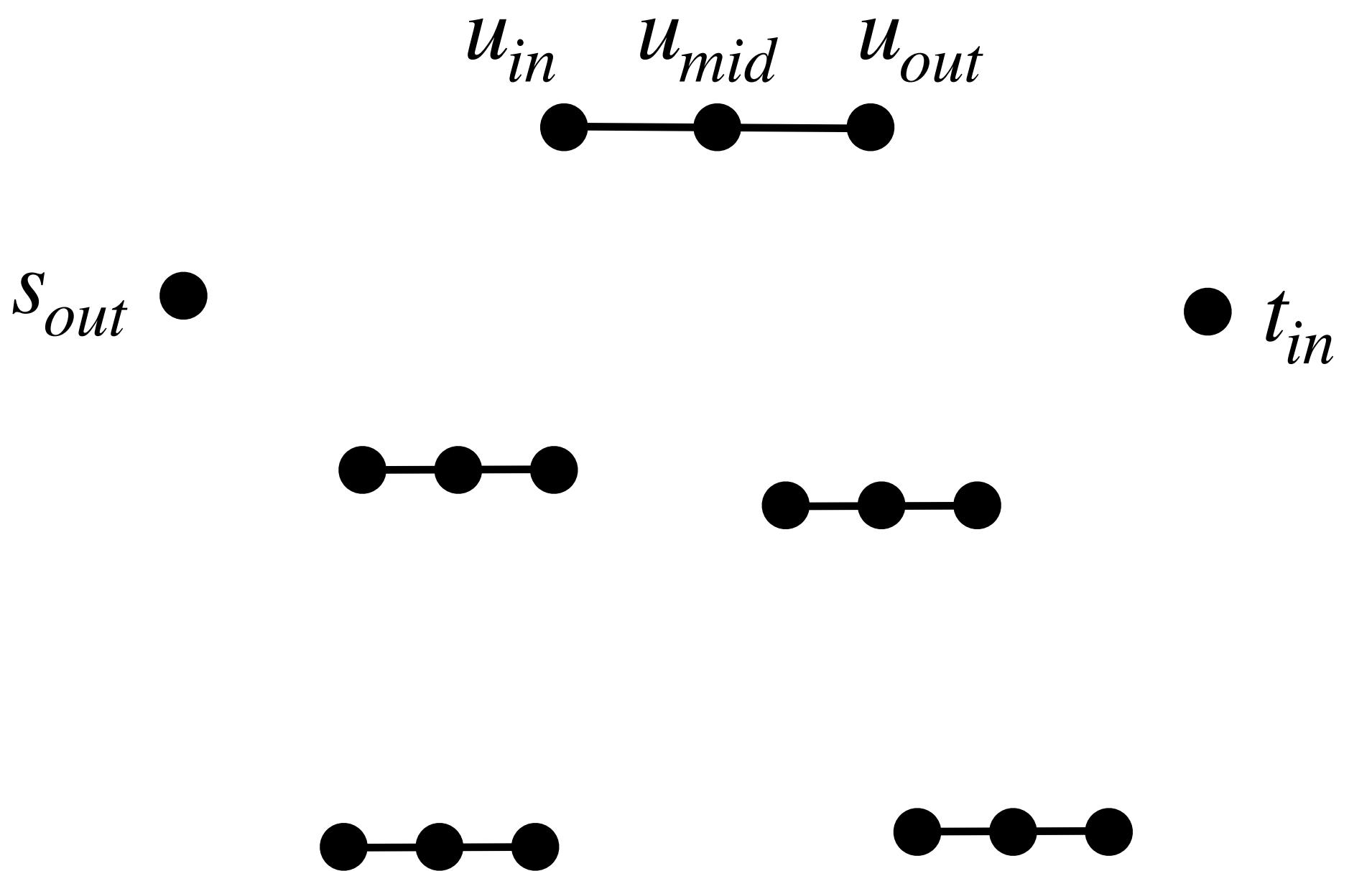
DirHampath \leq_p *Hampath*

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



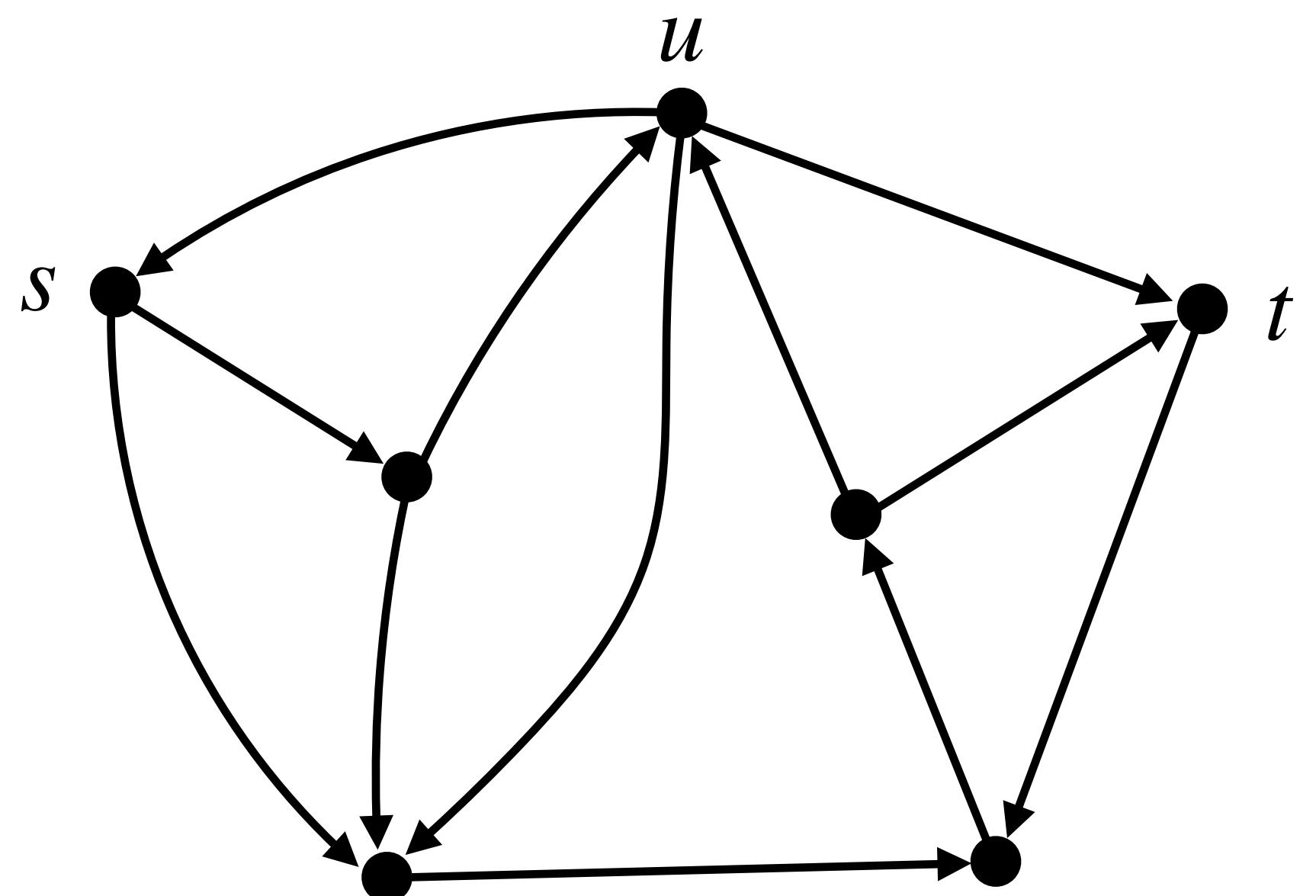
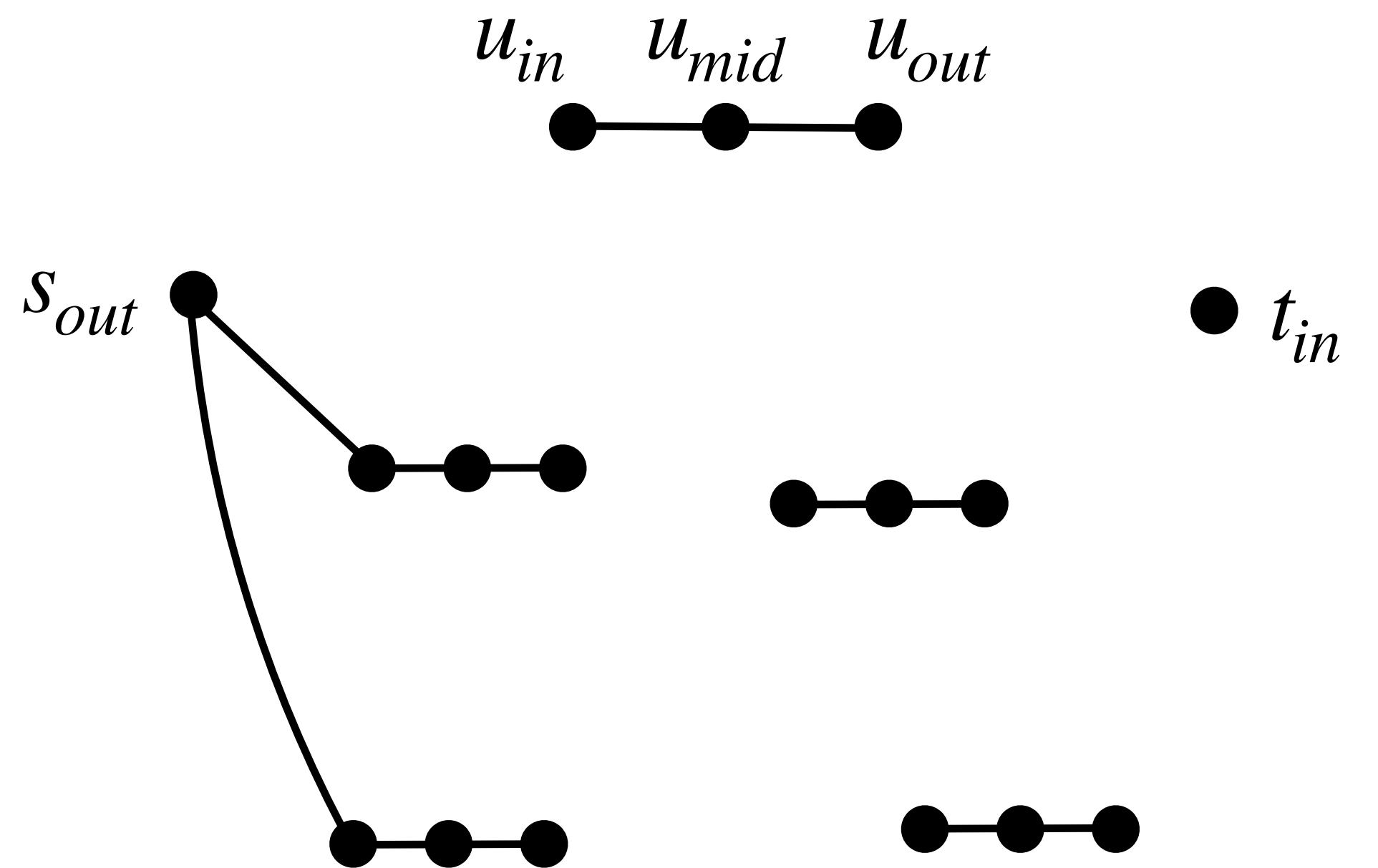
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



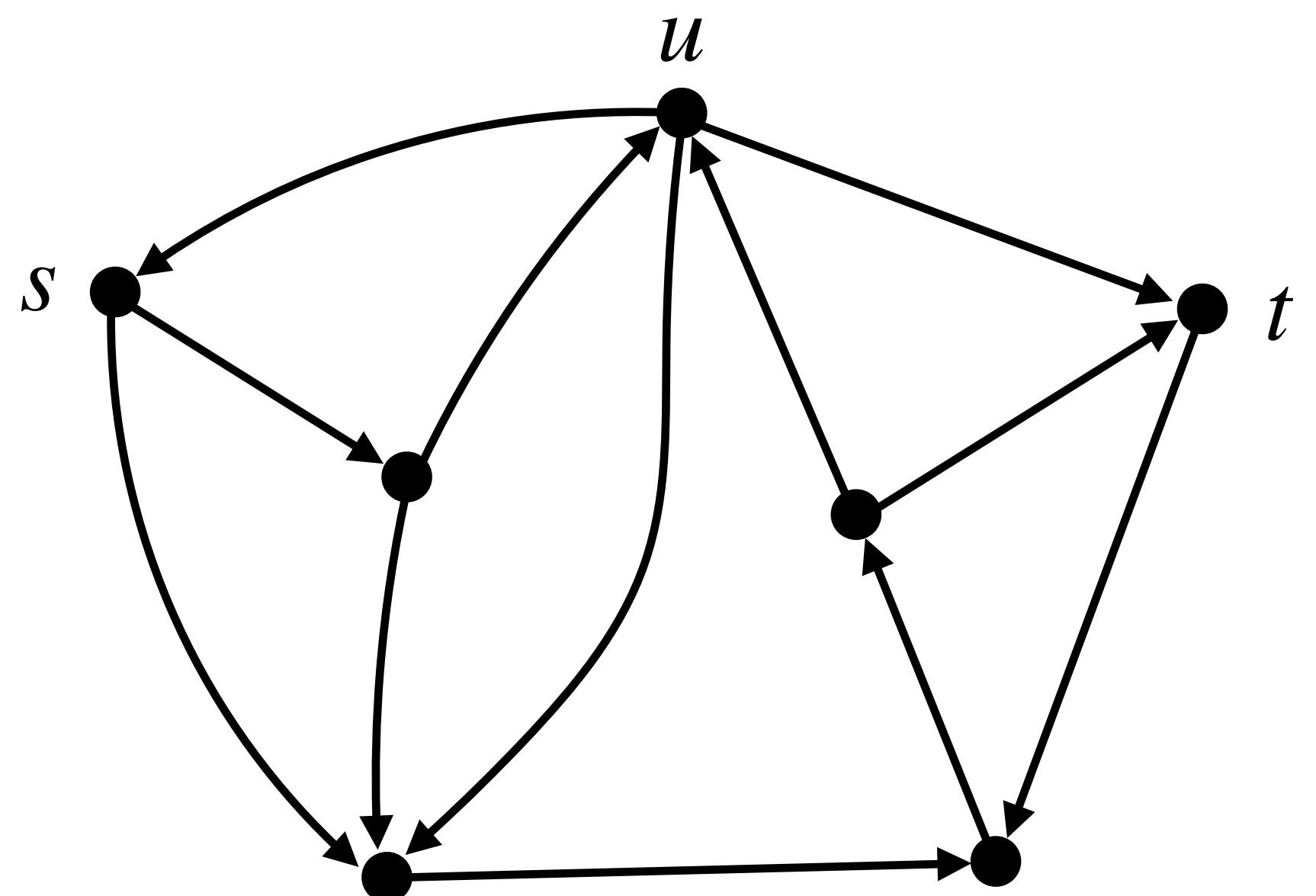
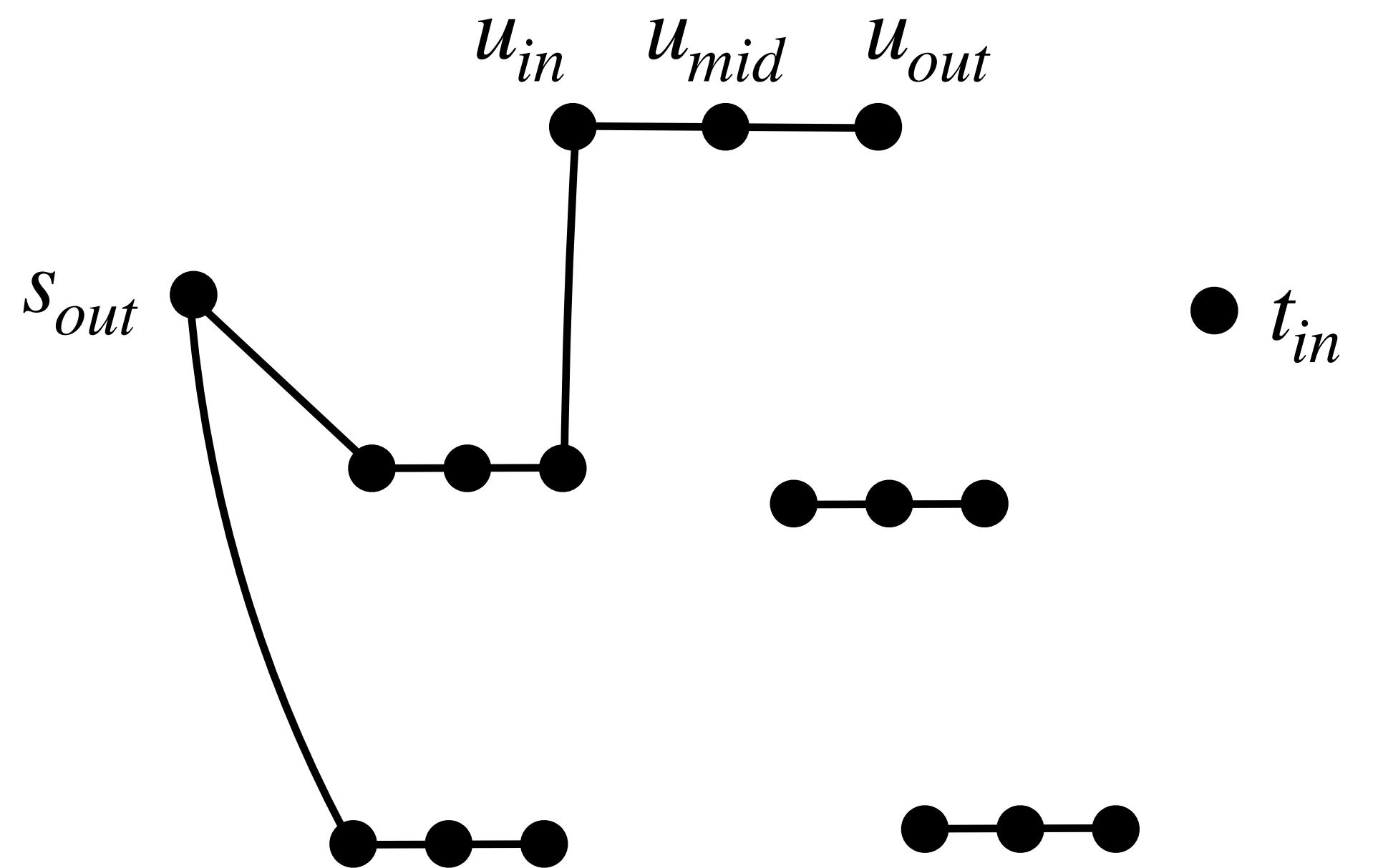
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



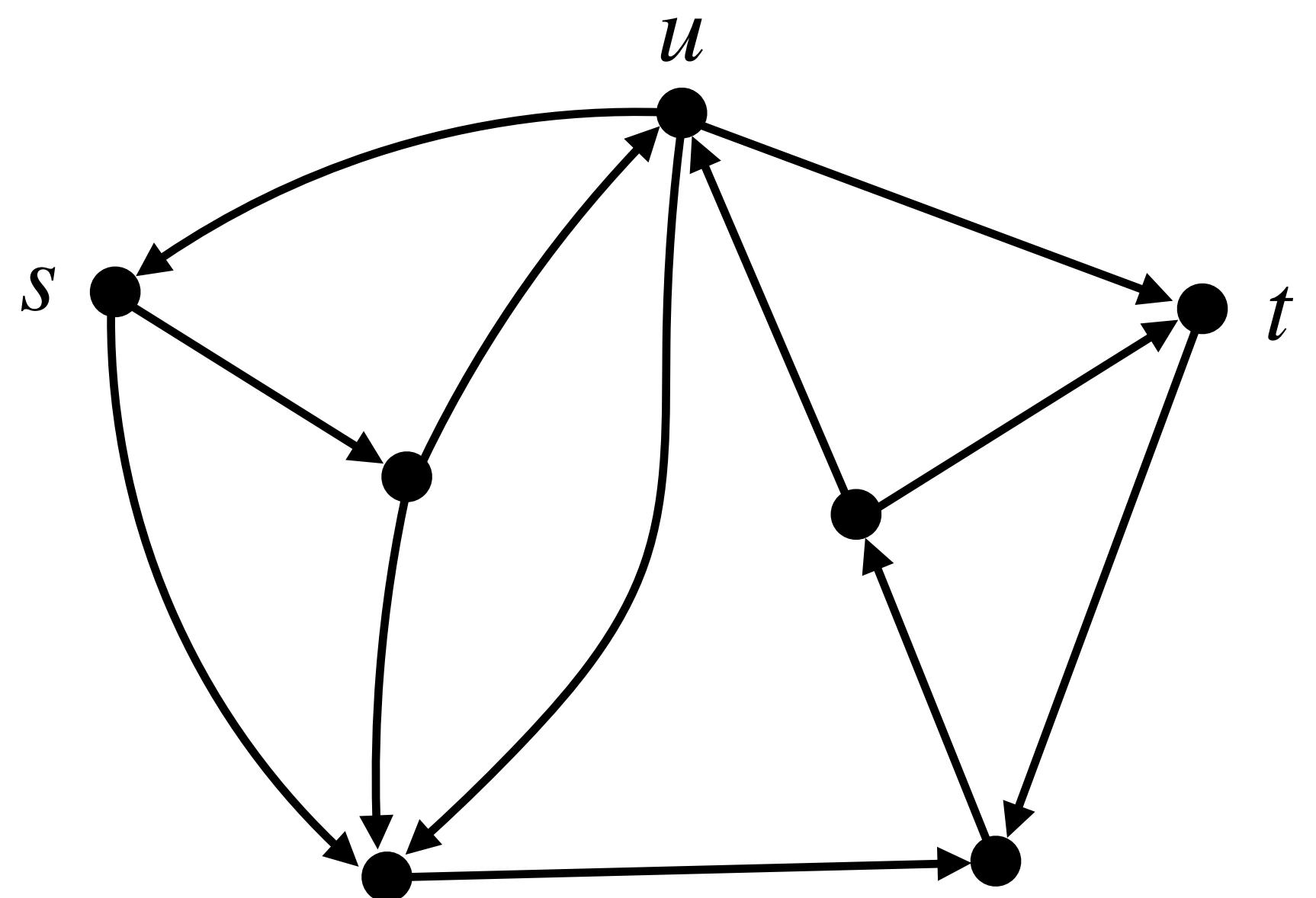
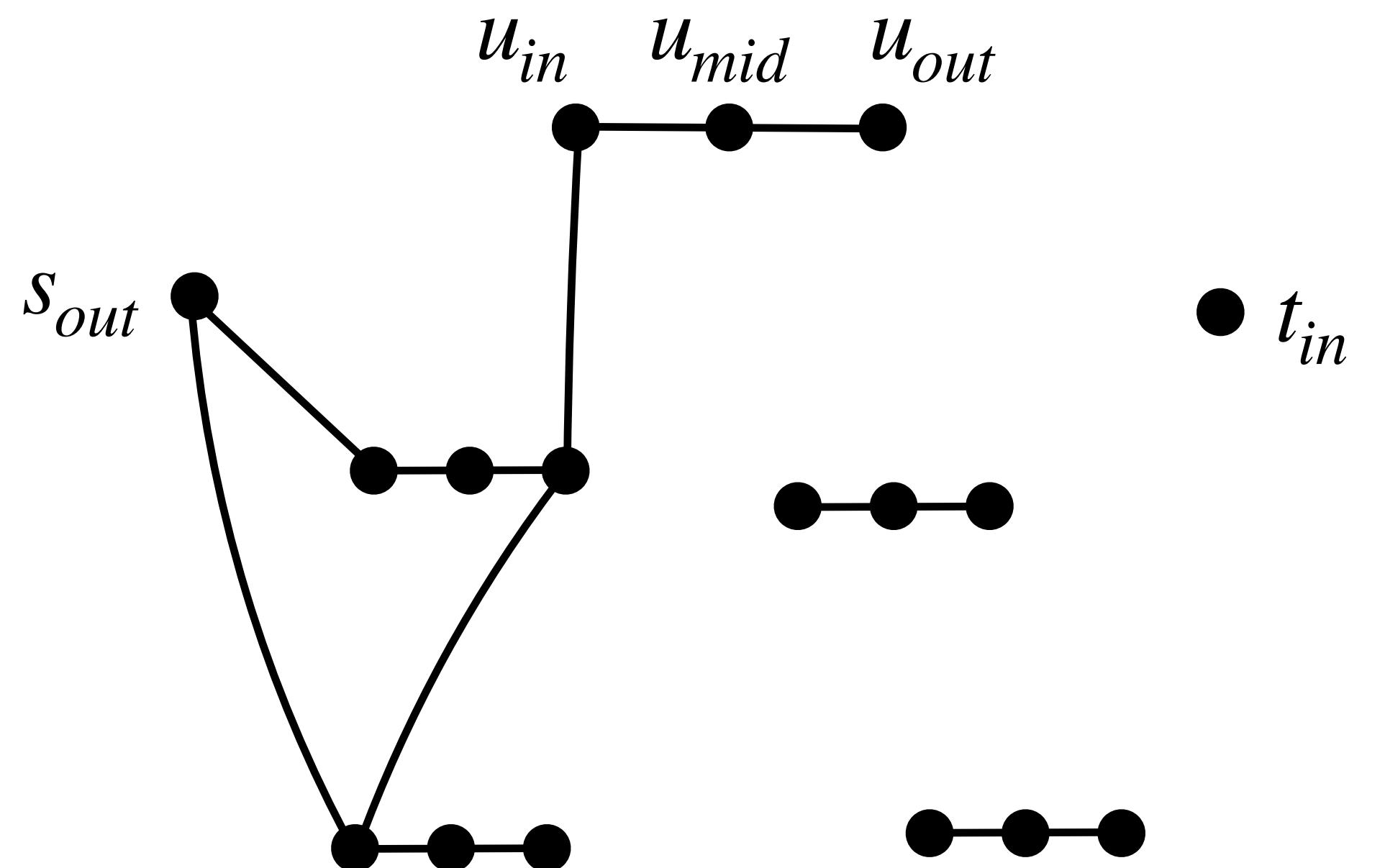
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



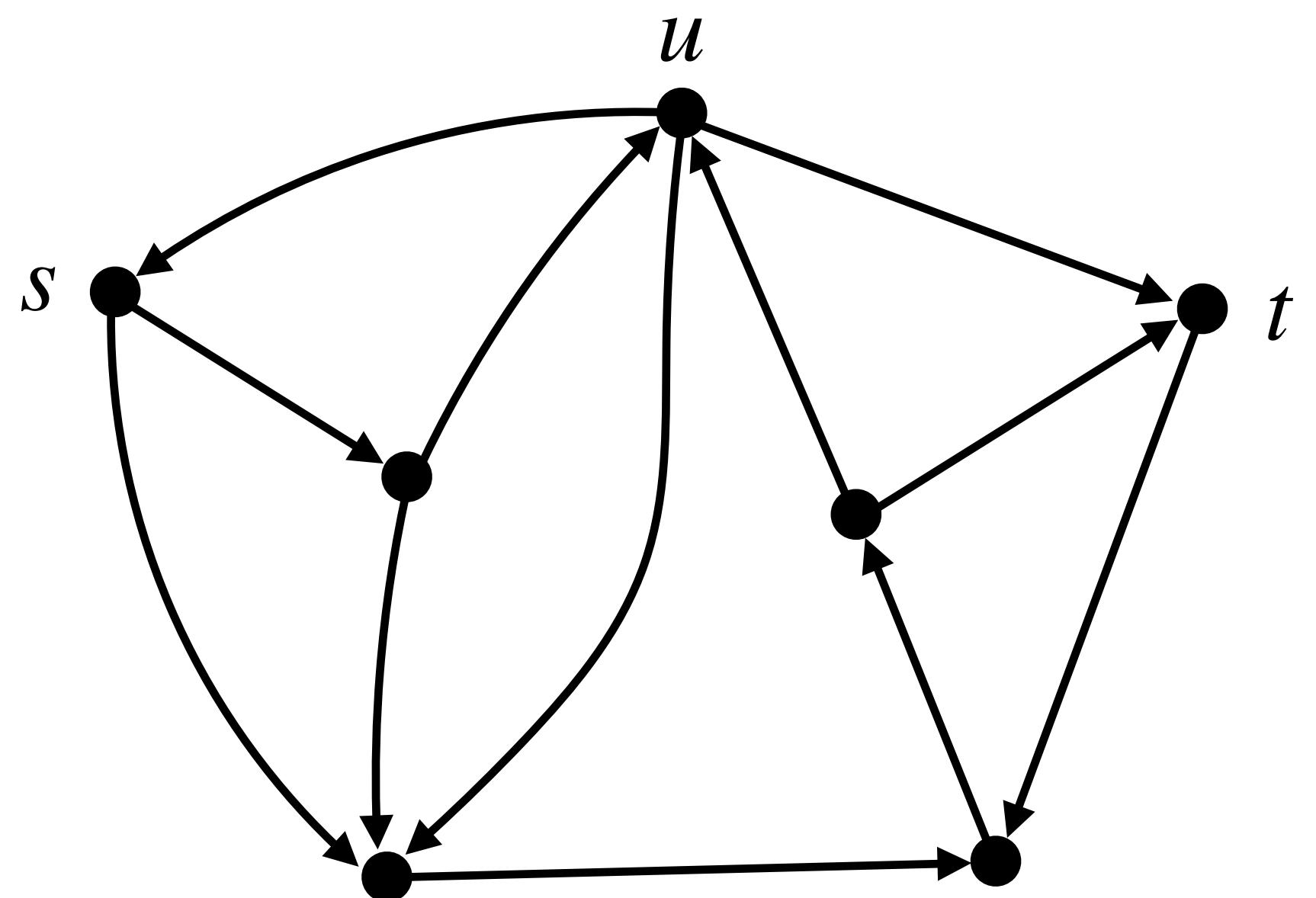
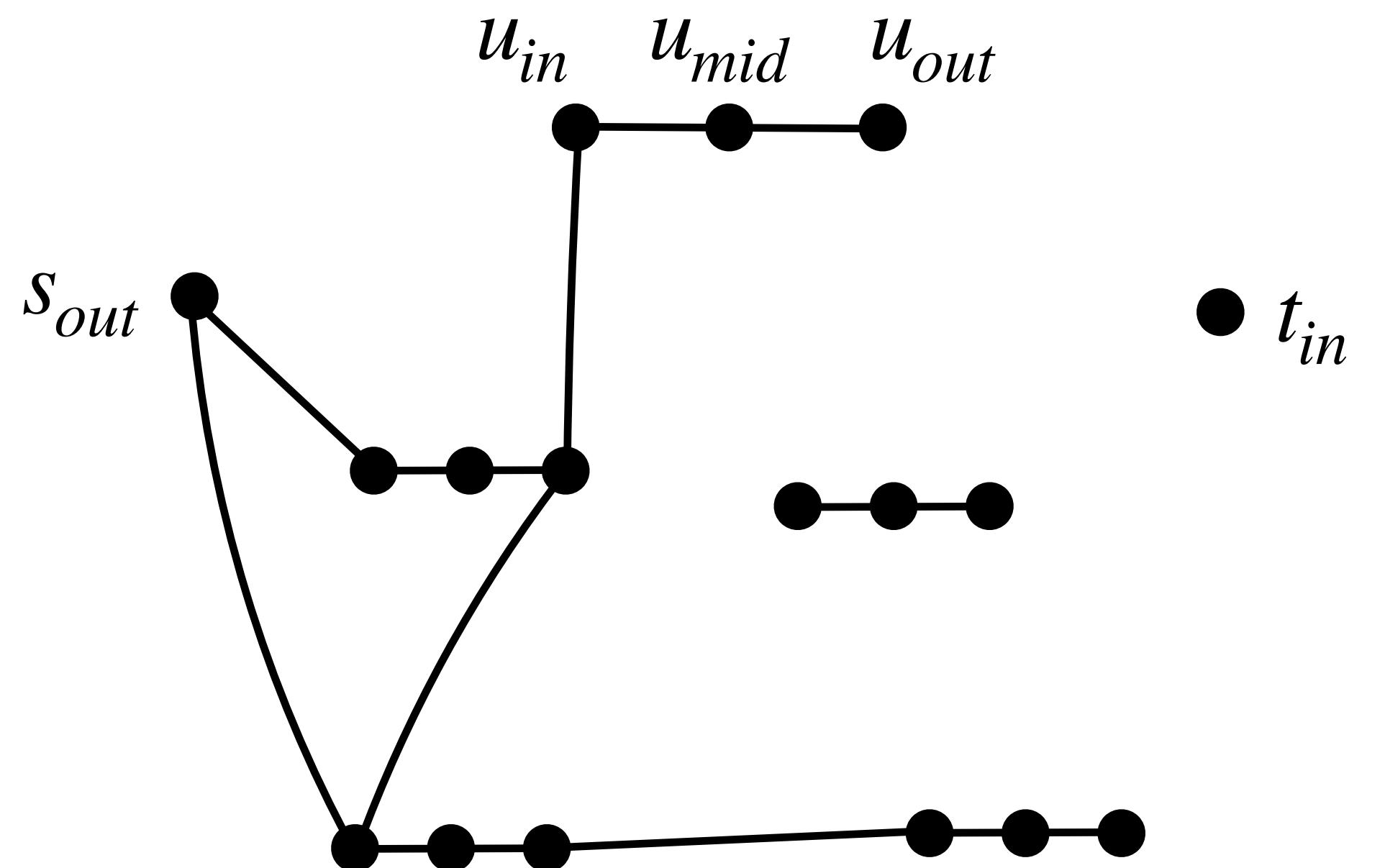
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



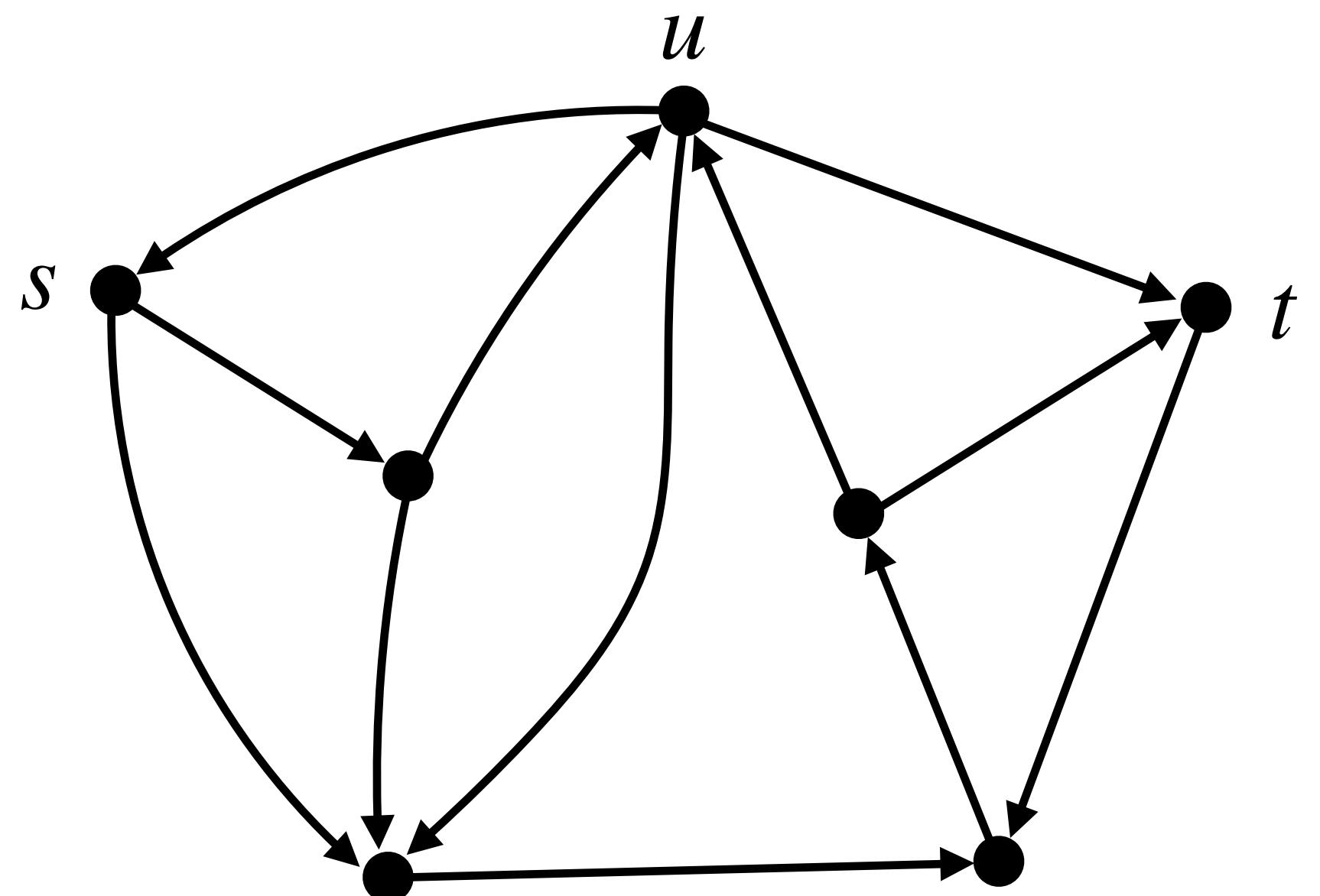
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



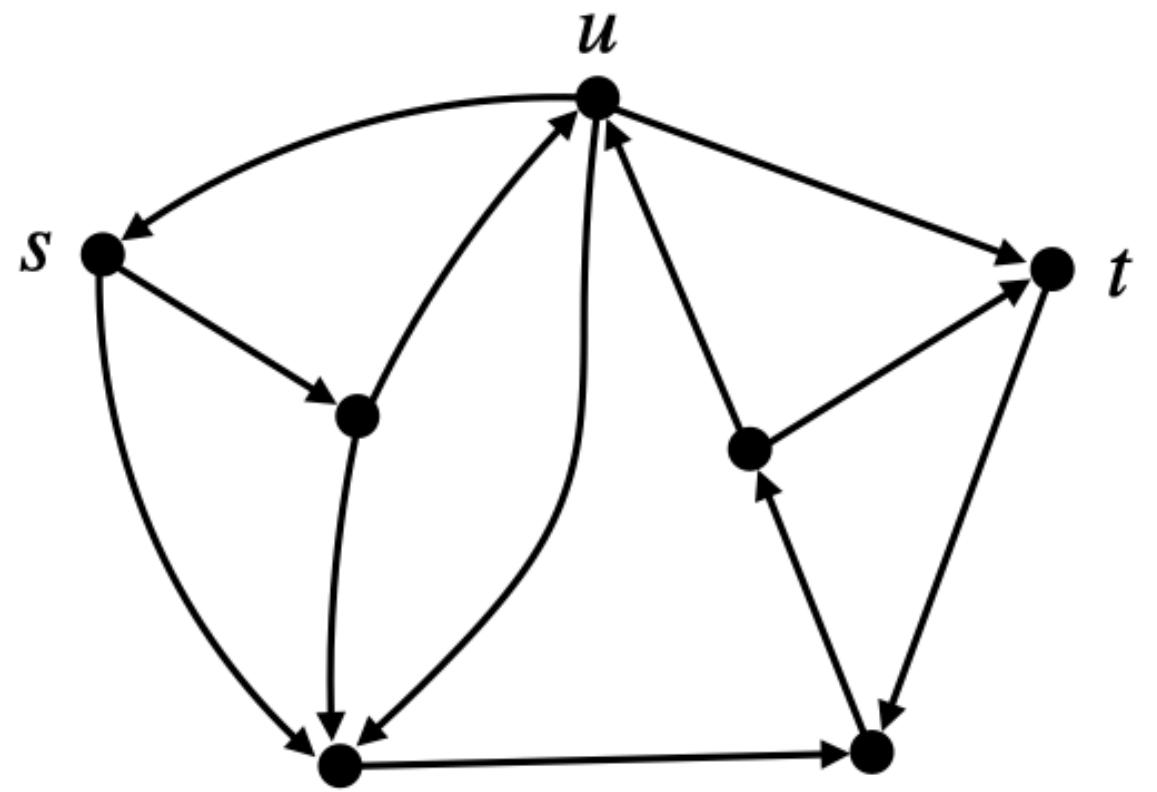
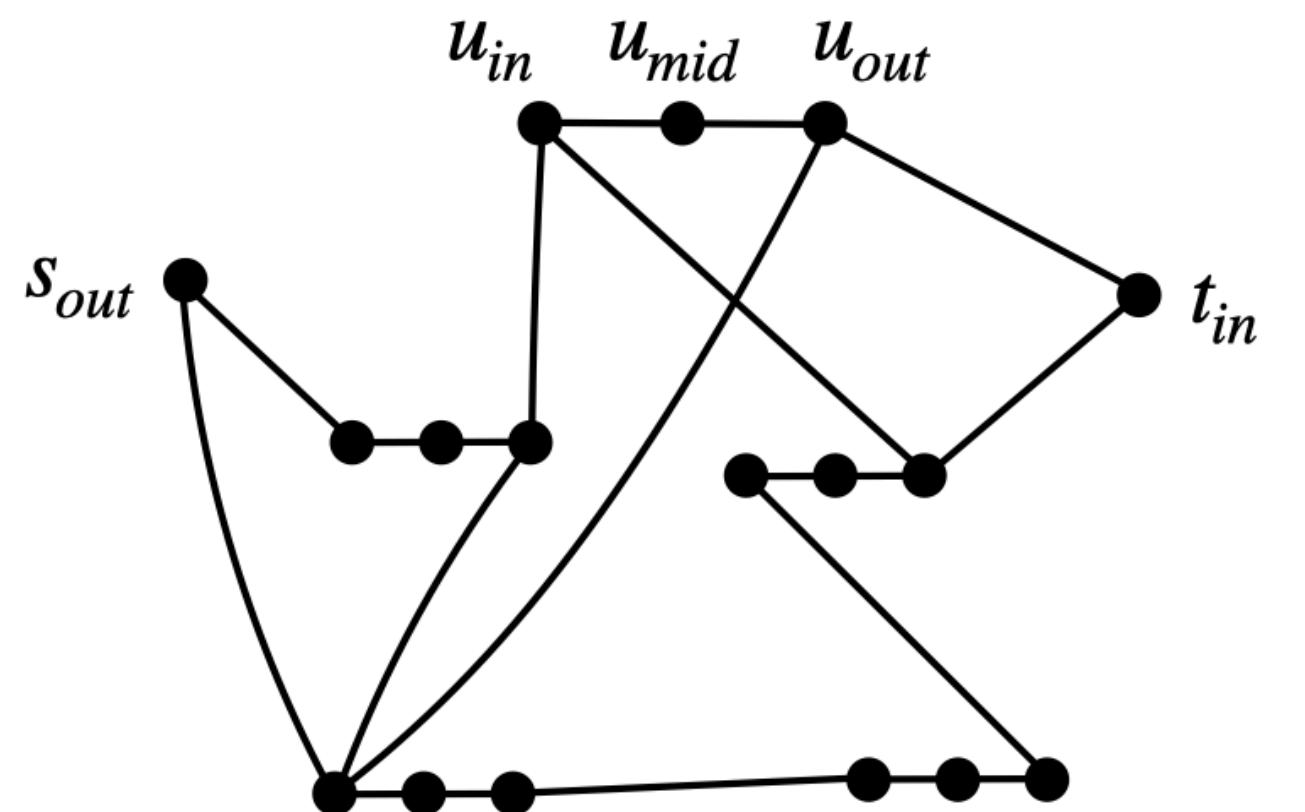
$\text{DirHamPath} \leq_p \text{HamPath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



$\text{DirHampath} \leq_p \text{Hampath}$

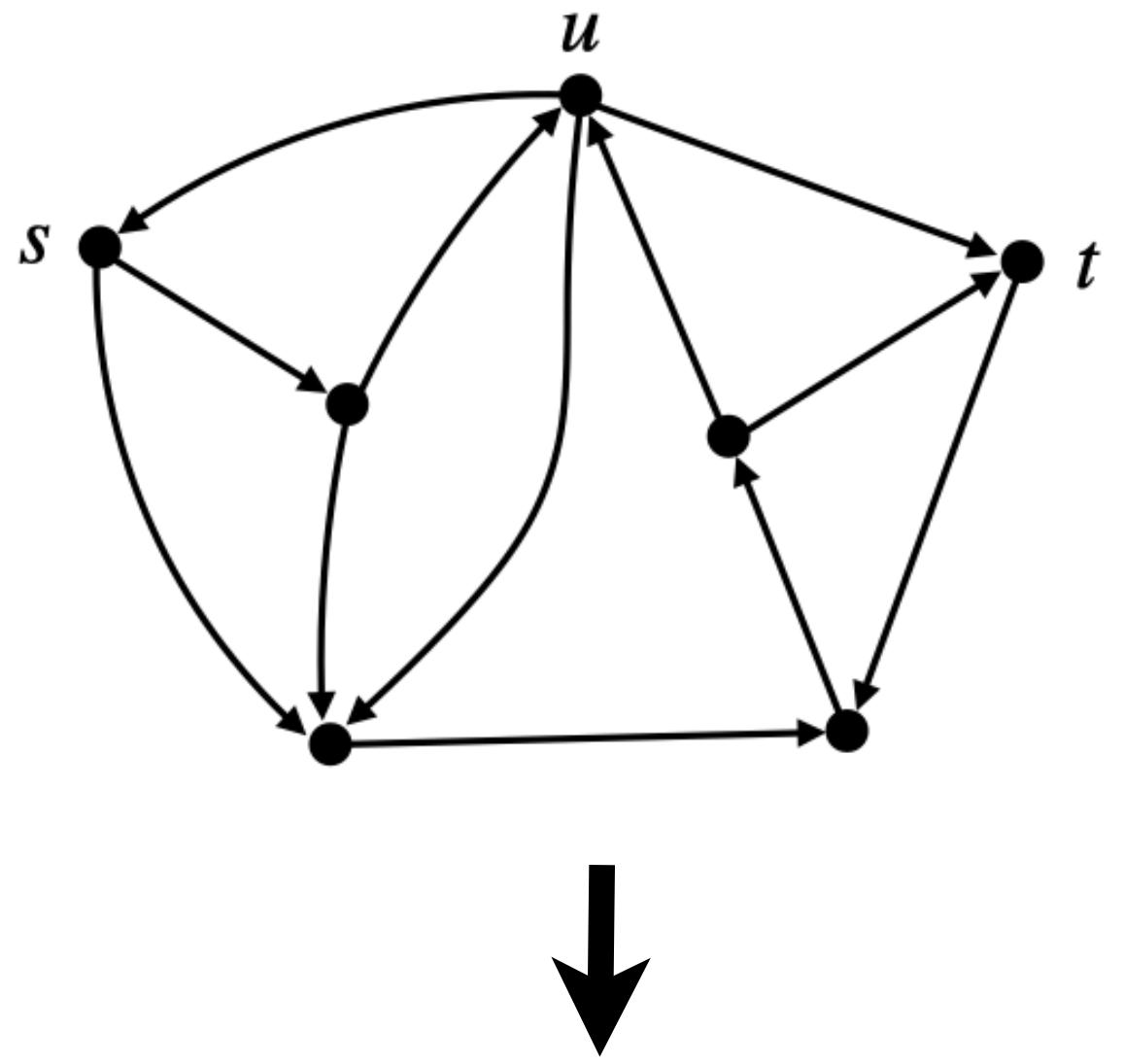
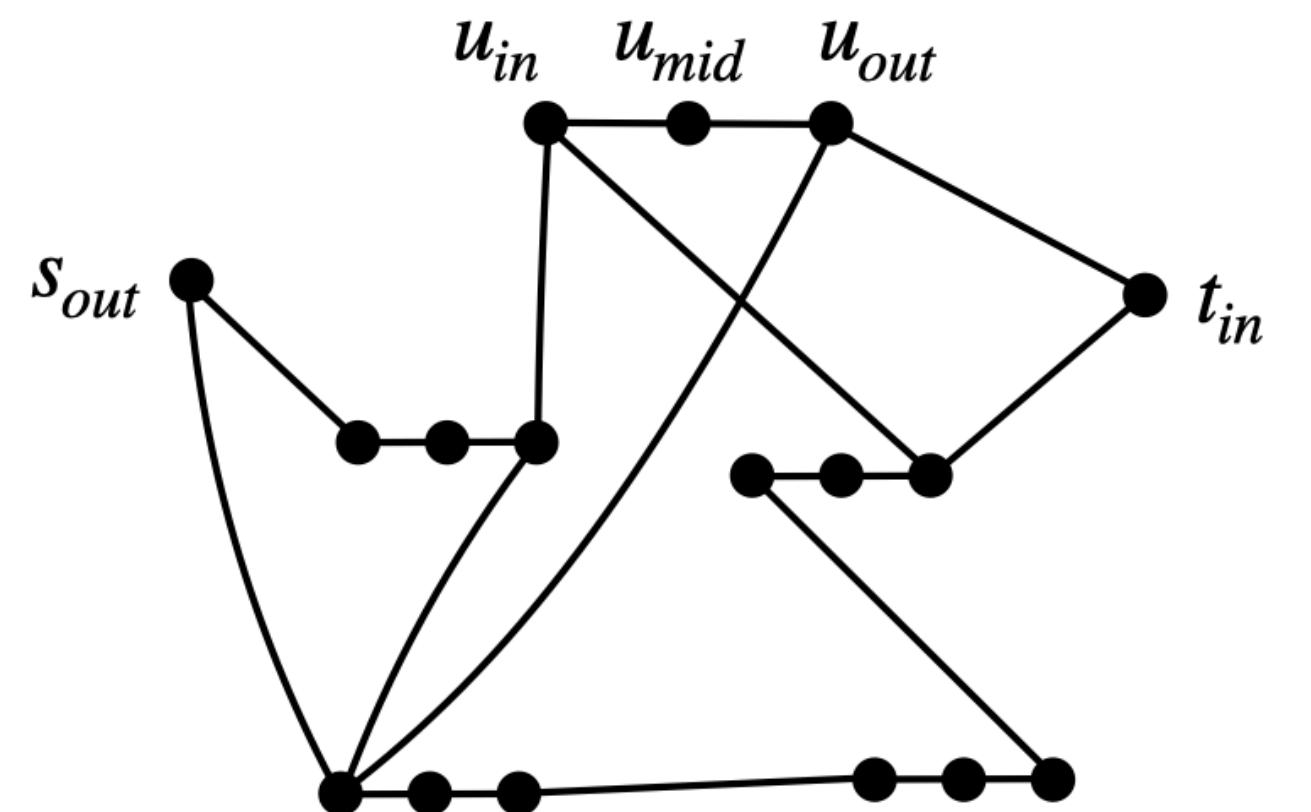
$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:



$\text{DirHampath} \leq_p \text{Hampath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

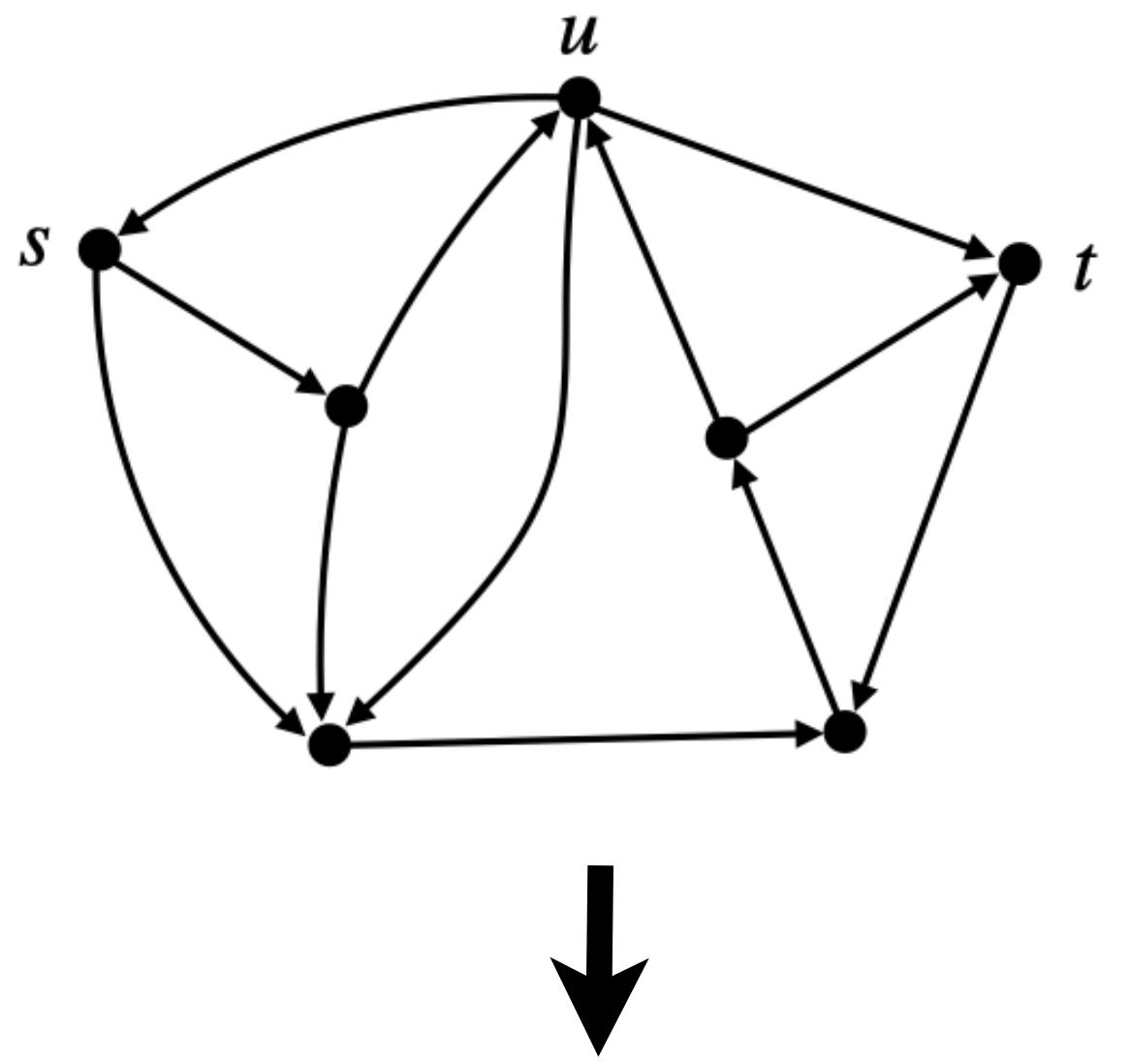
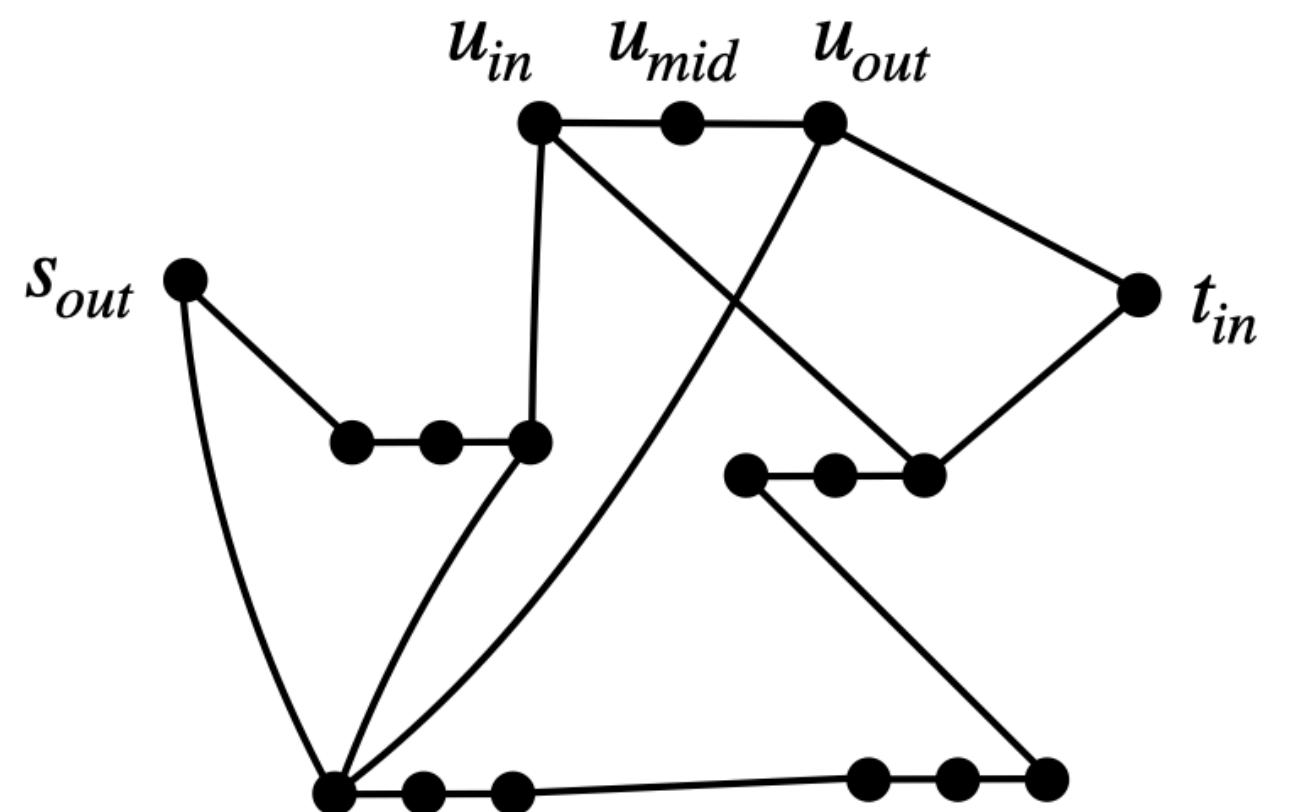
- Vertices of G' :



$\text{DirHampath} \leq_p \text{Hampath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

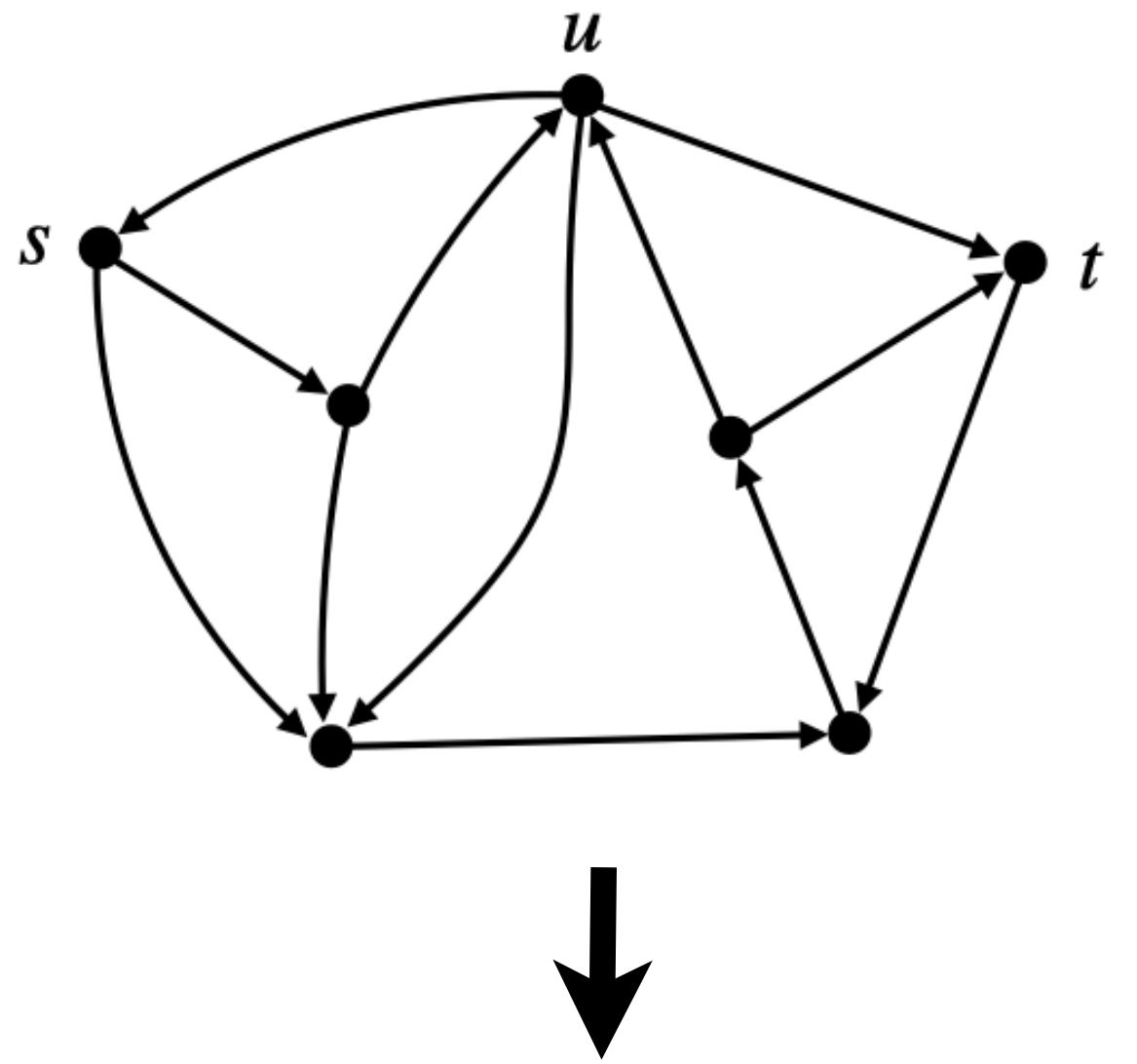
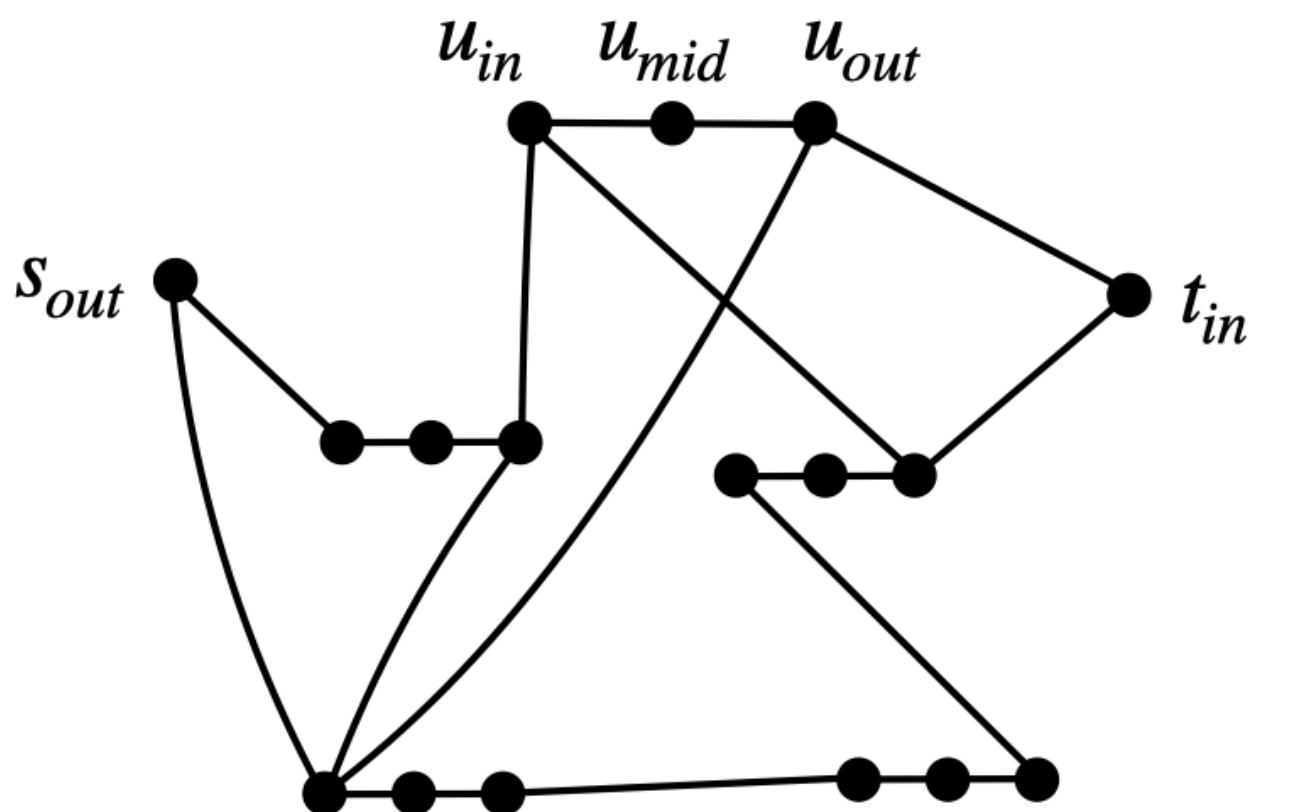
- Vertices of G' :
 - For s add s_{out} , for t add t_{in} .



$\text{DirHampath} \leq_p \text{Hampath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

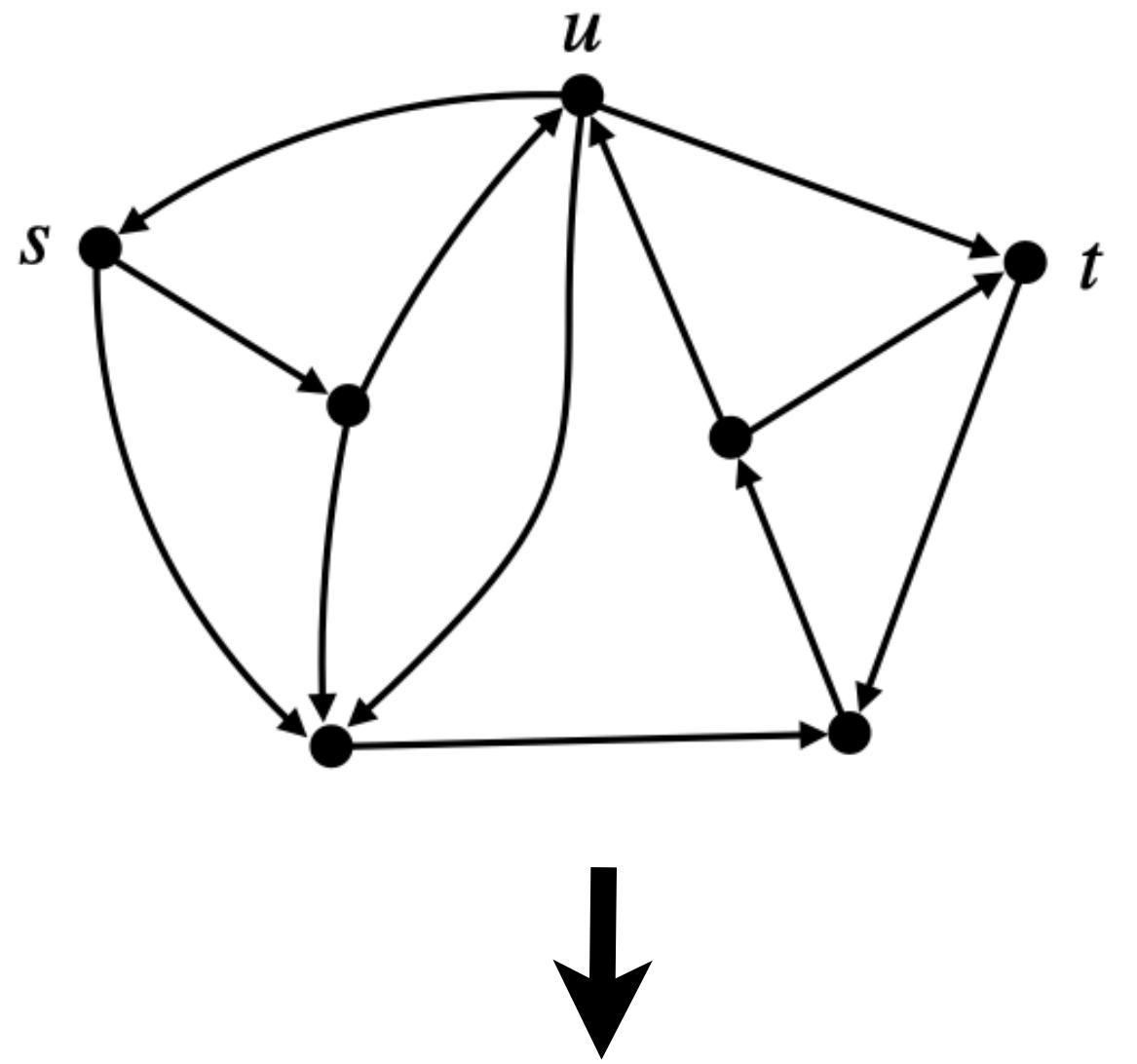
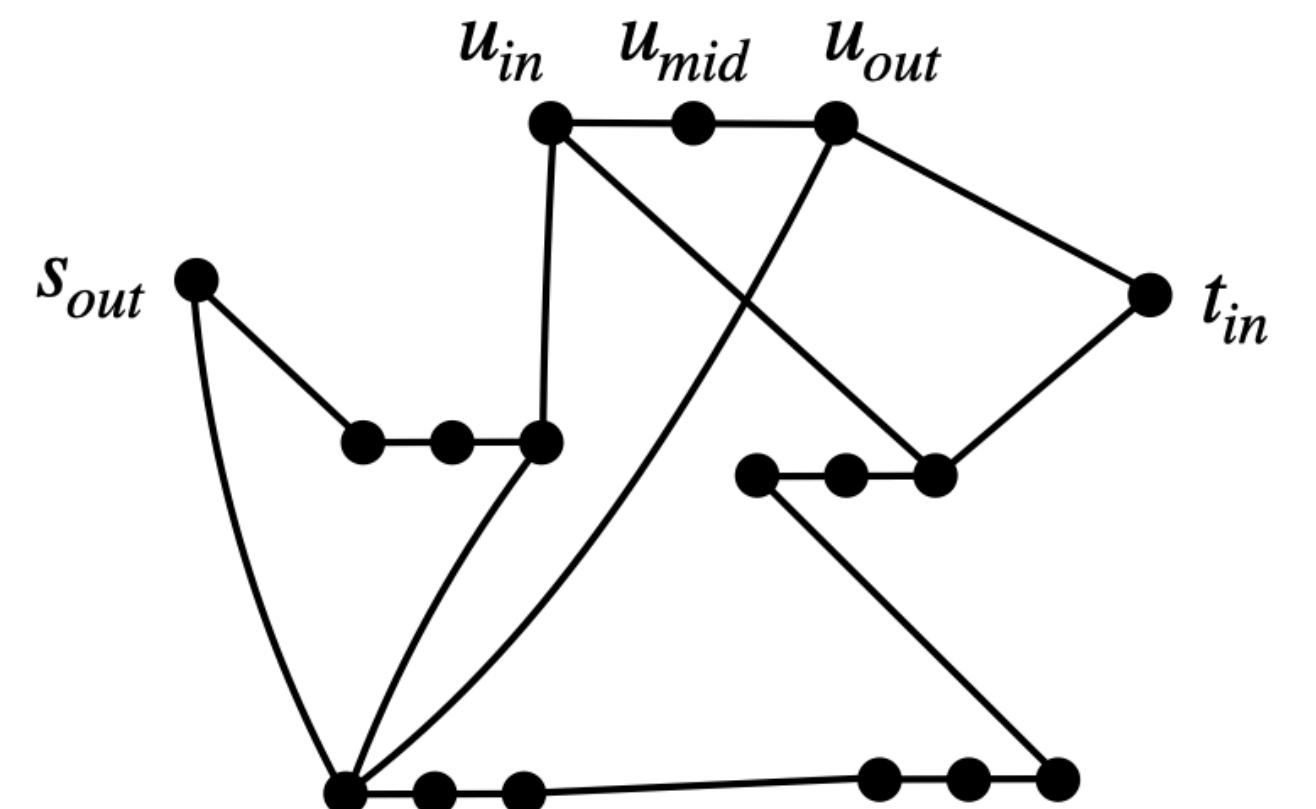
- Vertices of G' :
 - For s add s_{out} , for t add t_{in} .
 - For any other vertex u add 3 vertices u_{in}, u_{mid}, u_{out} .



$\text{DirHampath} \leq_p \text{Hampath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

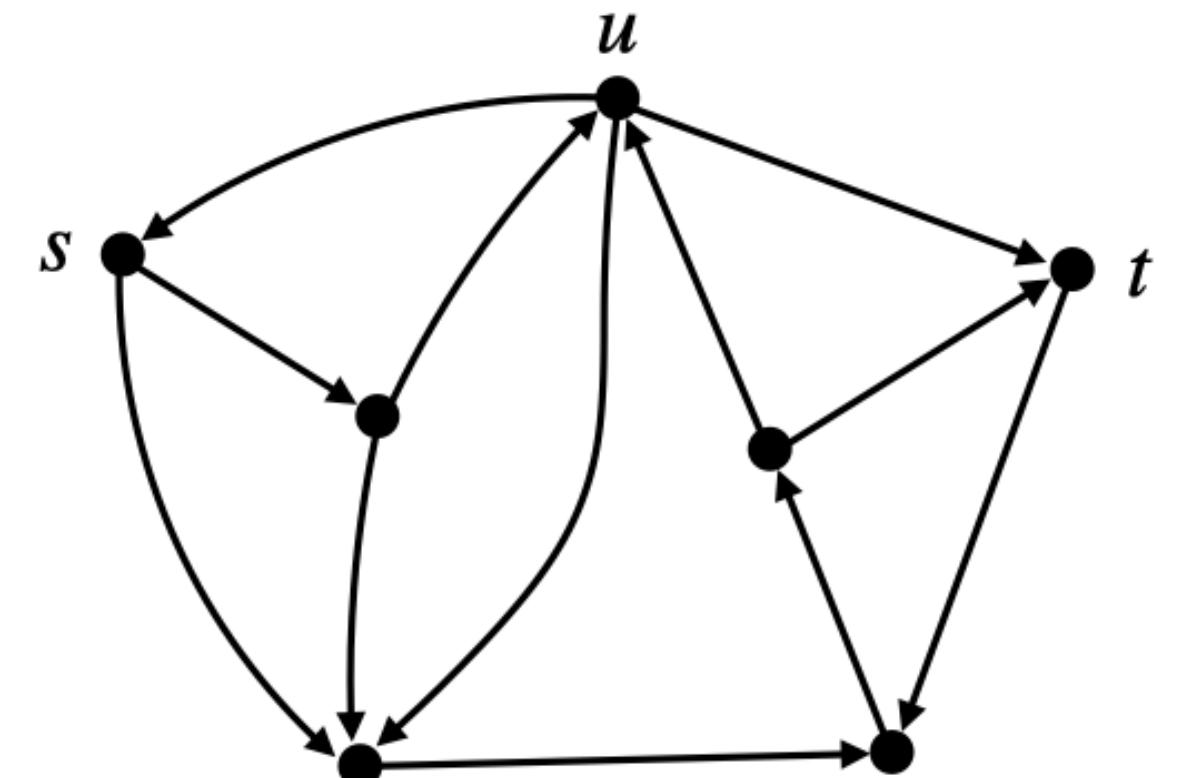
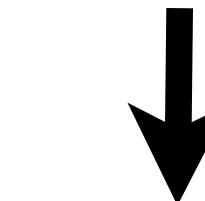
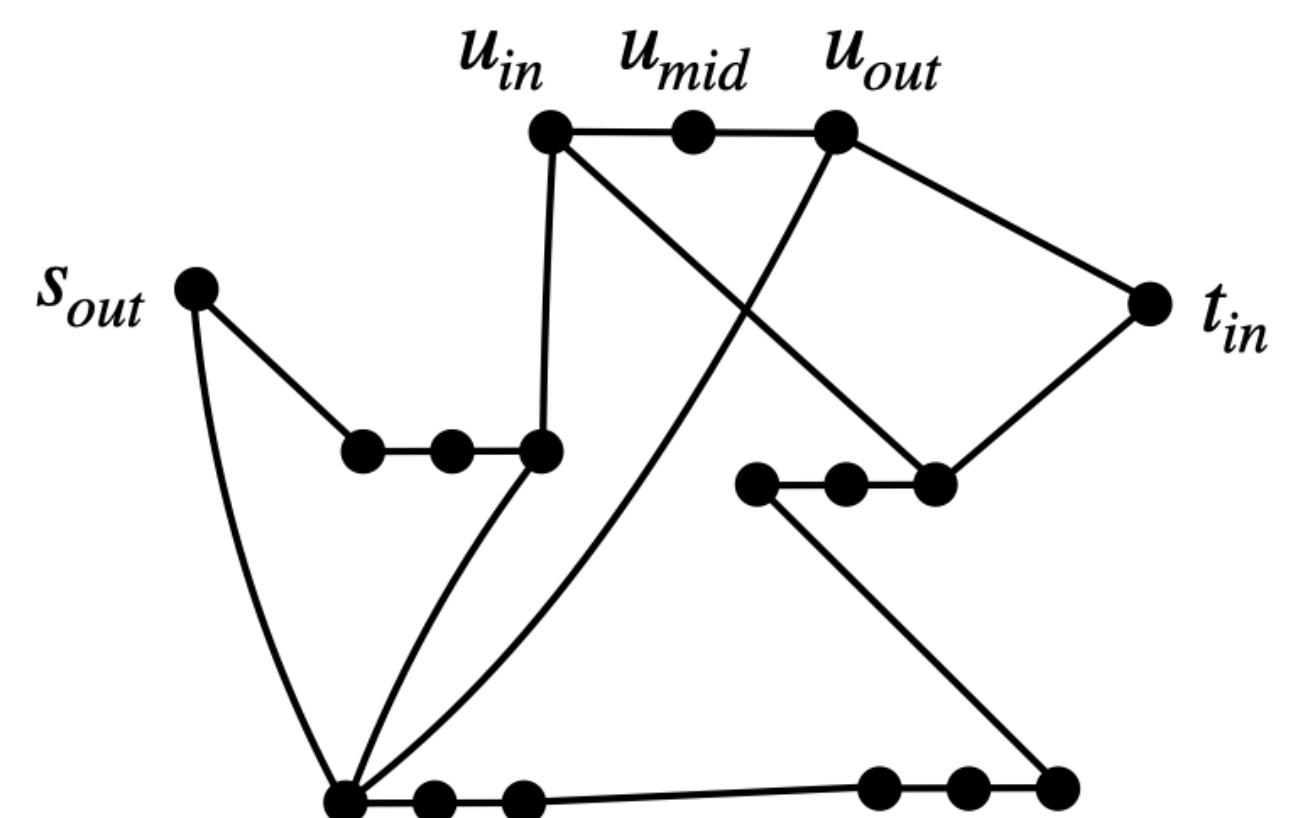
- Vertices of G' :
 - For s add s_{out} , for t add t_{in} .
 - For any other vertex u add 3 vertices u_{in}, u_{mid}, u_{out} .
- Edges of G' :



$\text{DirHampath} \leq_p \text{Hampath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

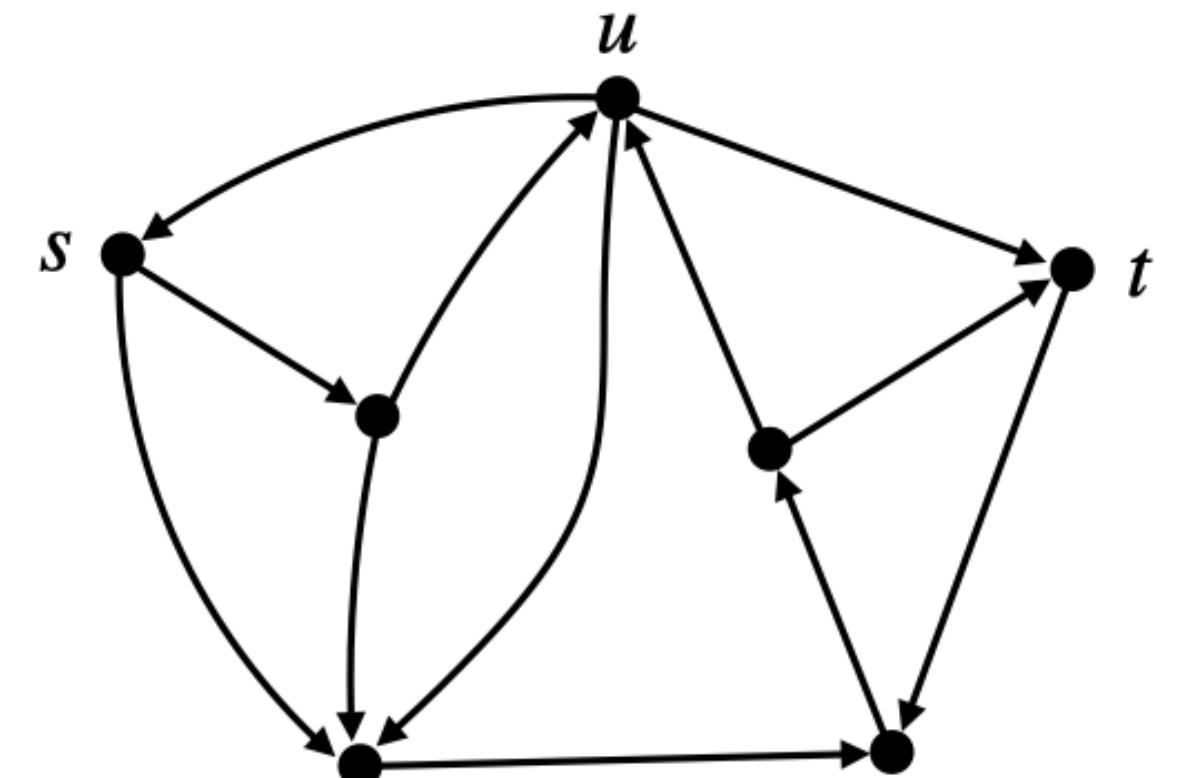
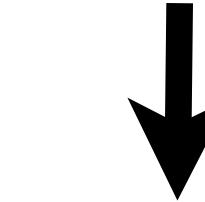
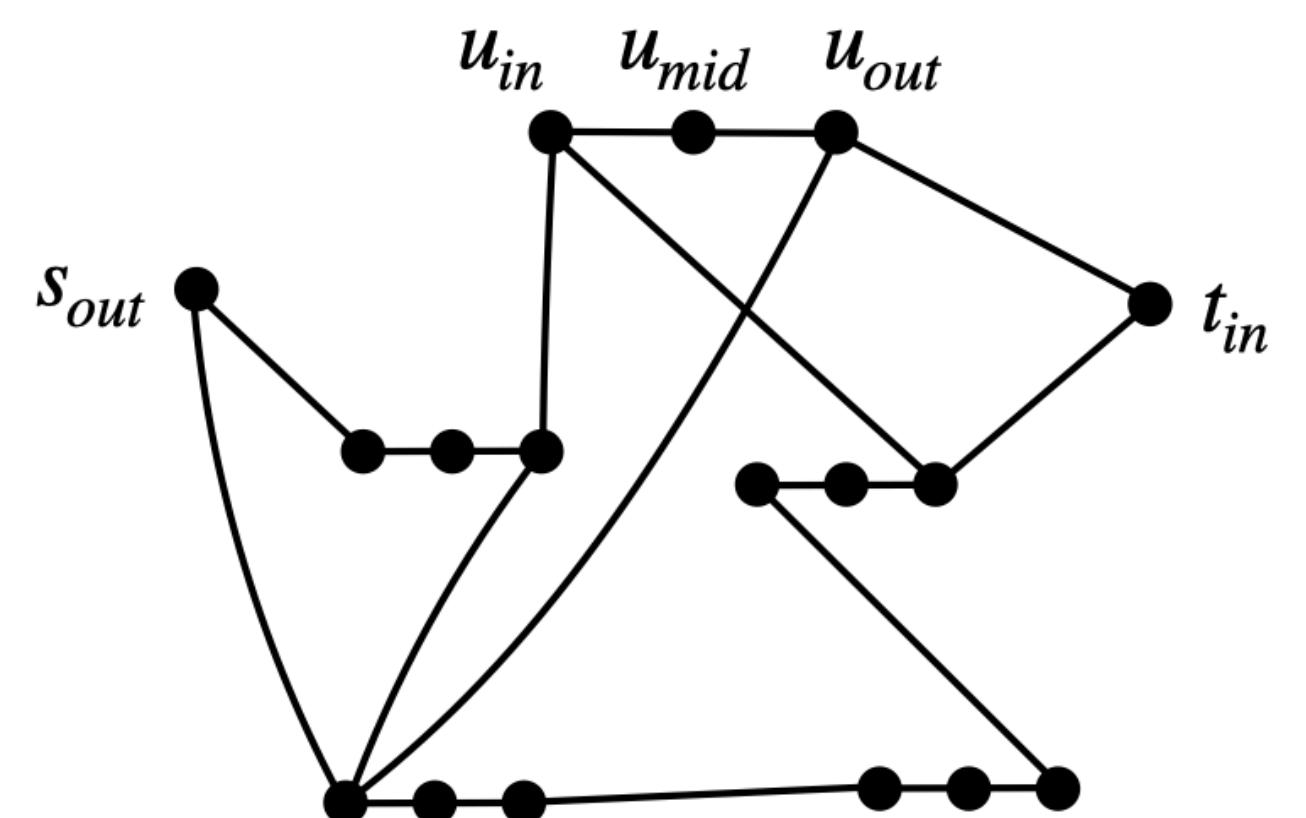
- Vertices of G' :
 - For s add s_{out} , for t add t_{in} .
 - For any other vertex u add 3 vertices u_{in}, u_{mid}, u_{out} .
- Edges of G' :
 - Ignore incoming edges to s and outgoing edges from t .



$\text{DirHampath} \leq_p \text{Hampath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

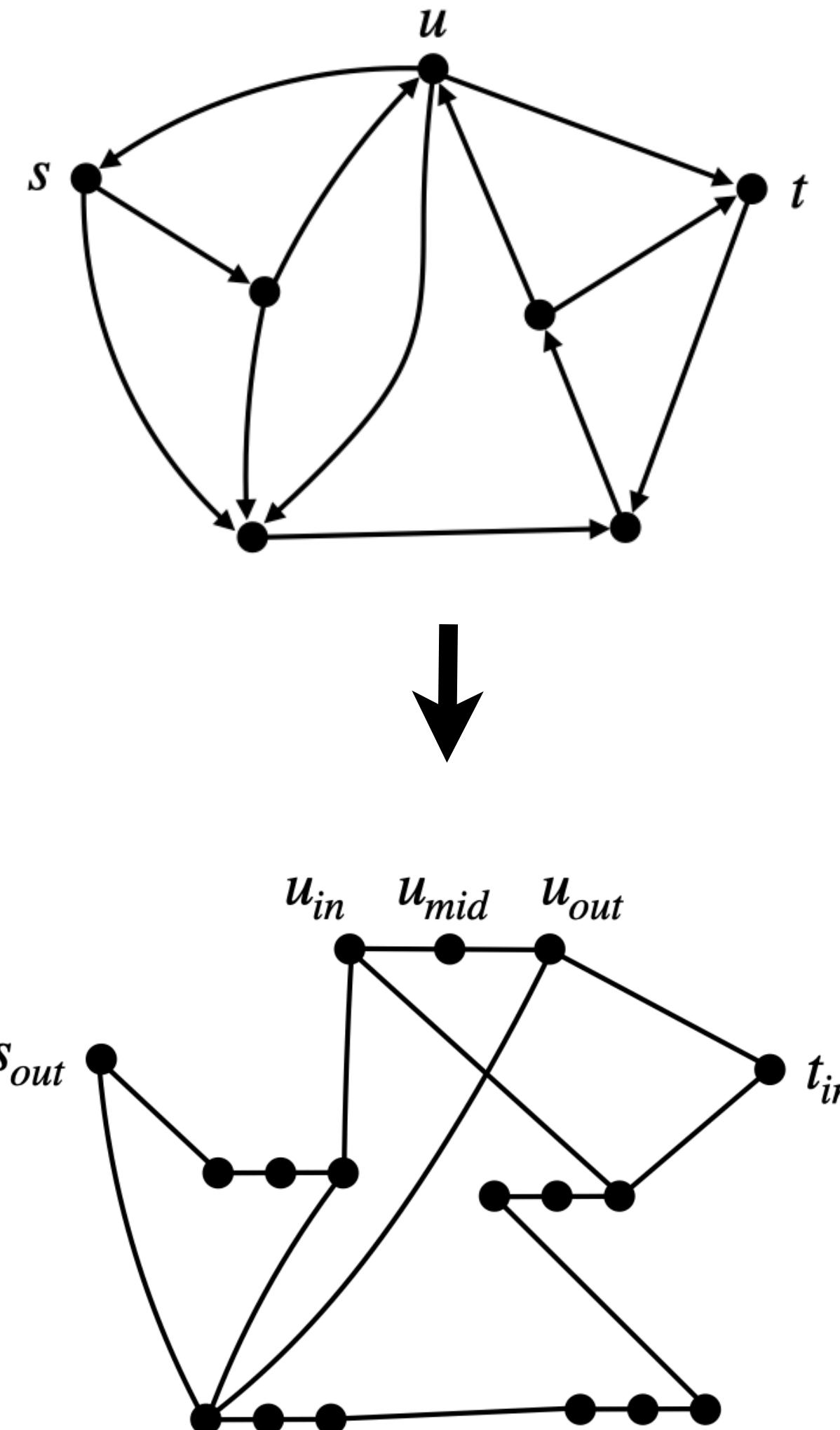
- Vertices of G' :
 - For s add s_{out} , for t add t_{in} .
 - For any other vertex u add 3 vertices u_{in}, u_{mid}, u_{out} .
- Edges of G' :
 - Ignore incoming edges to s and outgoing edges from t .
 - For every edge (u, v) have an edge $\{u_{out}, v_{in}\}$.



$\text{DirHampath} \leq_p \text{Hampath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

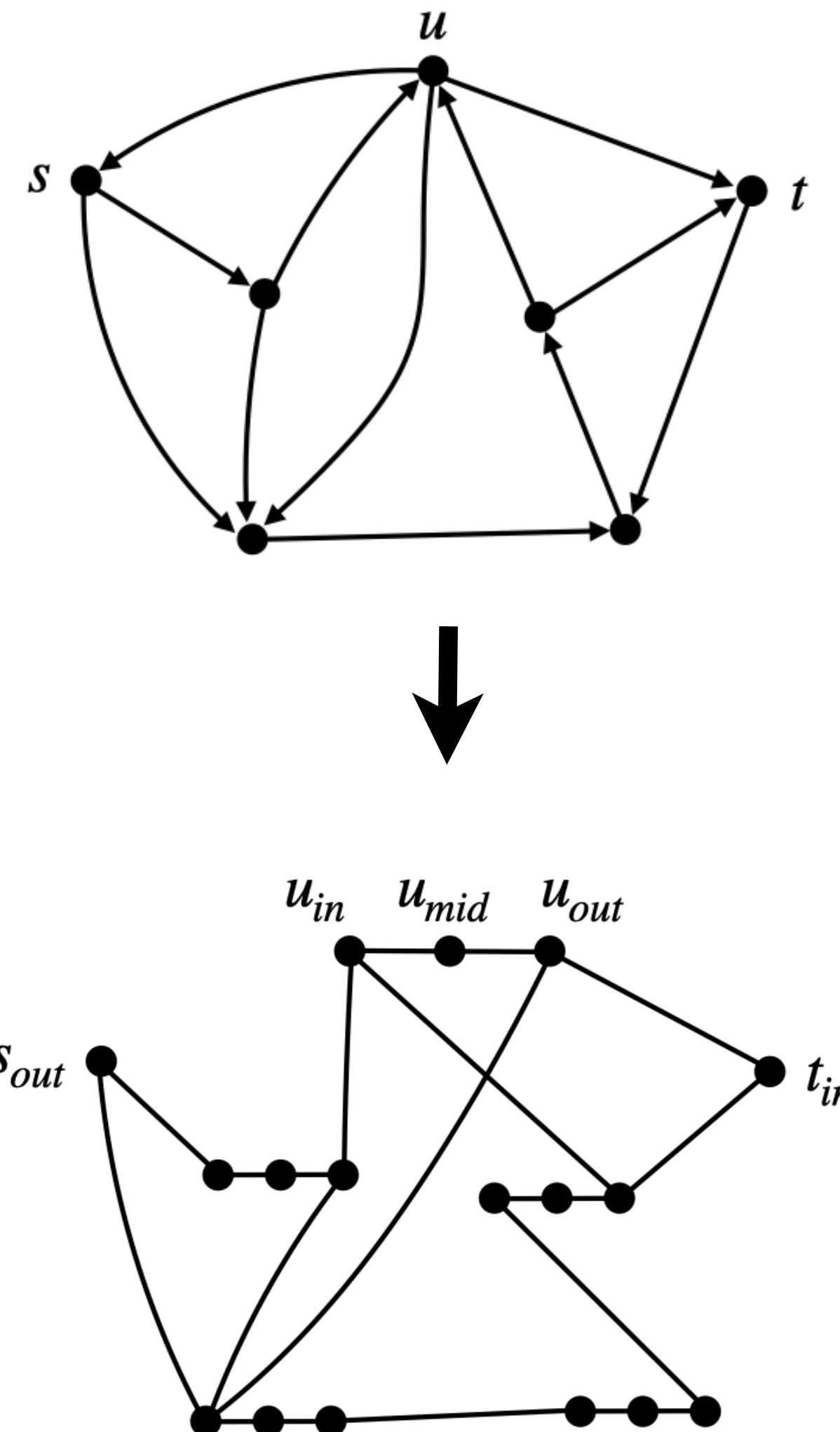
- Vertices of G' :
 - For s add s_{out} , for t add t_{in} .
 - For any other vertex u add 3 vertices u_{in}, u_{mid}, u_{out} .
- Edges of G' :
 - Ignore incoming edges to s and outgoing edges from t .
 - For every edge (u, v) have an edge $\{u_{out}, v_{in}\}$.
 - Edges $\{u_{in}, u_{mid}\}$ and $\{u_{mid}, u_{out}\}$.



$\text{DirHampath} \leq_p \text{Hampath}$

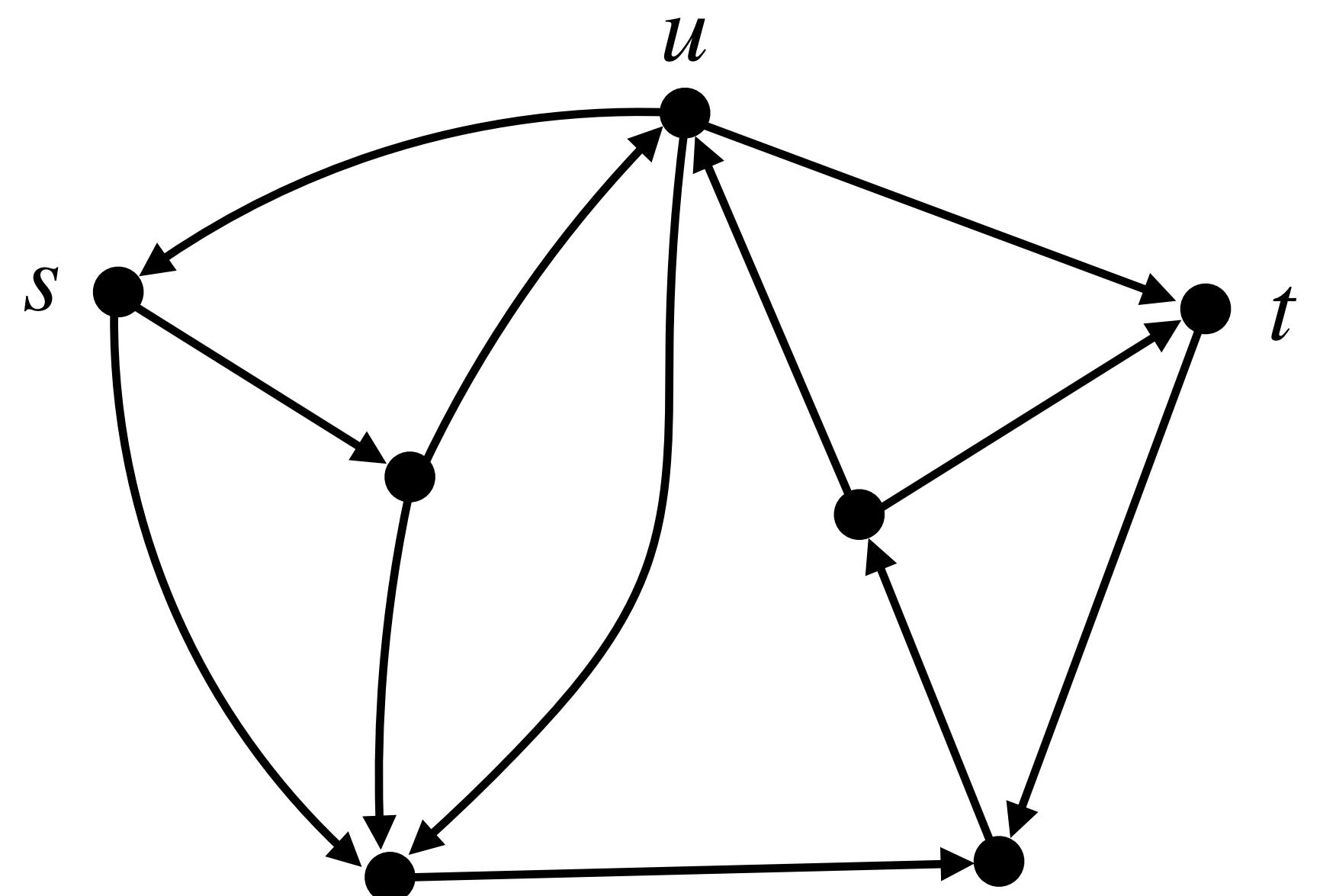
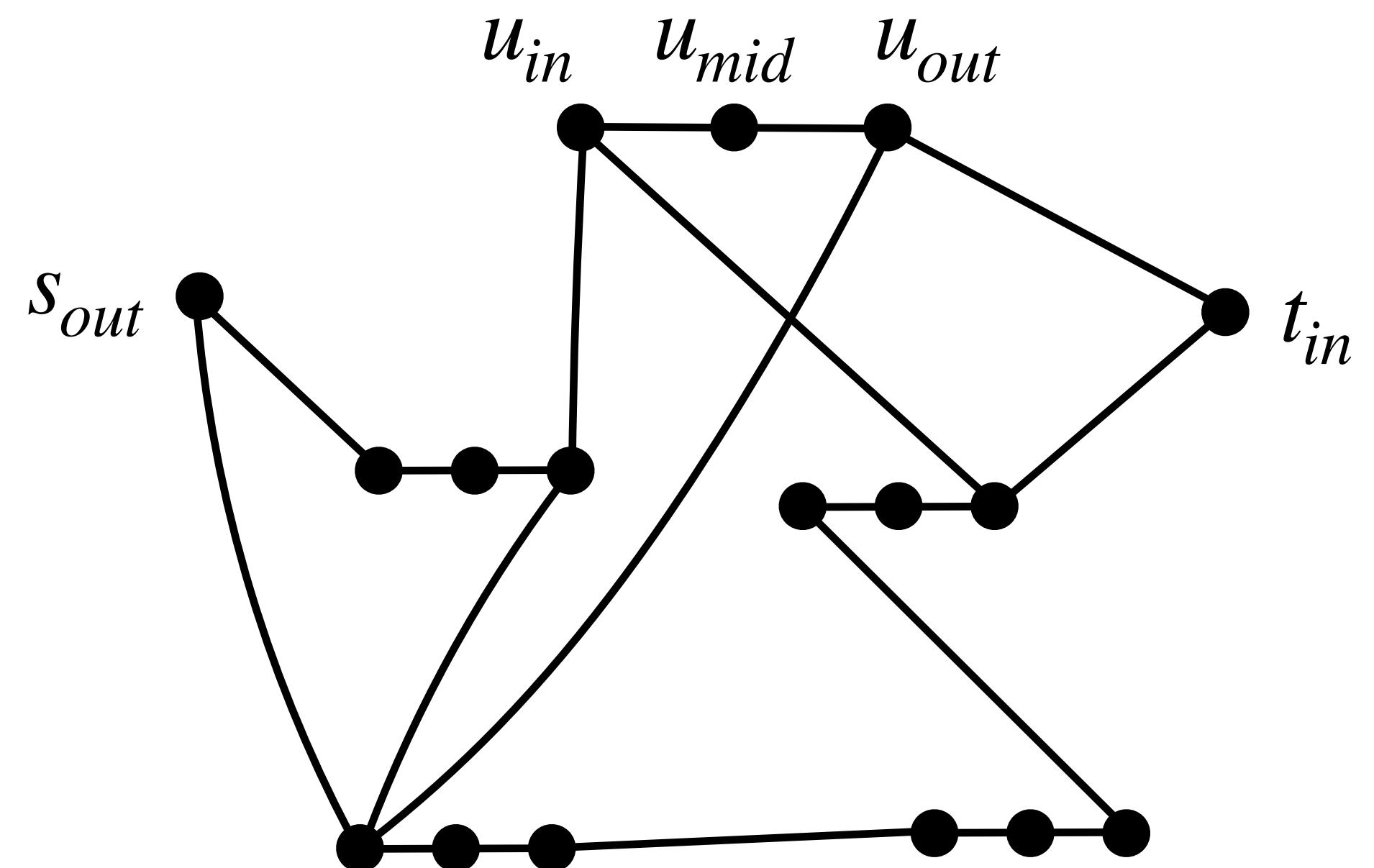
$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

- Vertices of G' :
 - For s add s_{out} , for t add t_{in} .
 - For any other vertex u add 3 vertices u_{in}, u_{mid}, u_{out} .
- Edges of G' :
 - Ignore incoming edges to s and outgoing edges from t .
 - For every edge (u, v) have an edge $\{u_{out}, v_{in}\}$.
 - Edges $\{u_{in}, u_{mid}\}$ and $\{u_{mid}, u_{out}\}$.
 - $s' = s_{out}, t' = t_{in}$.



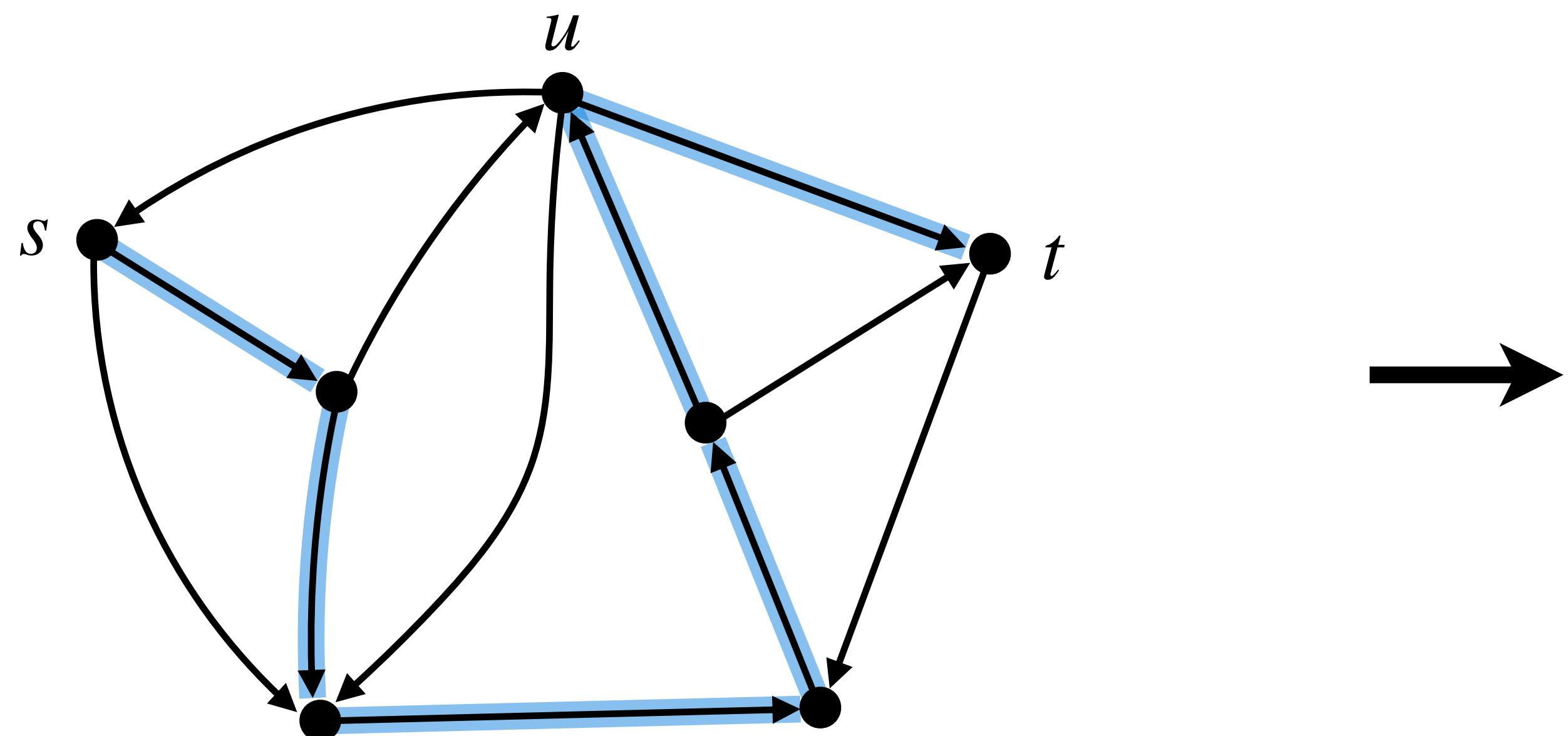
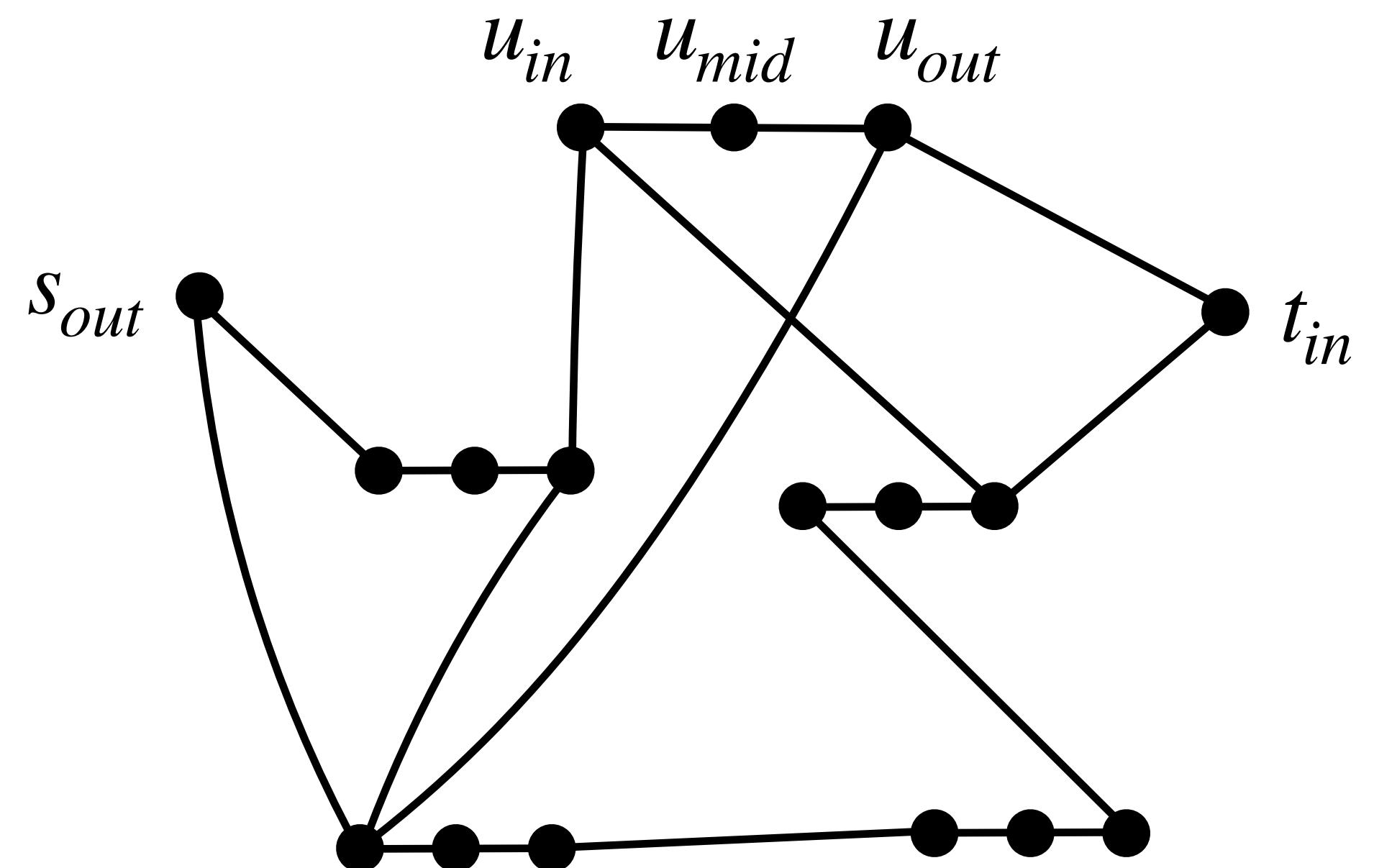
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Rightarrow):



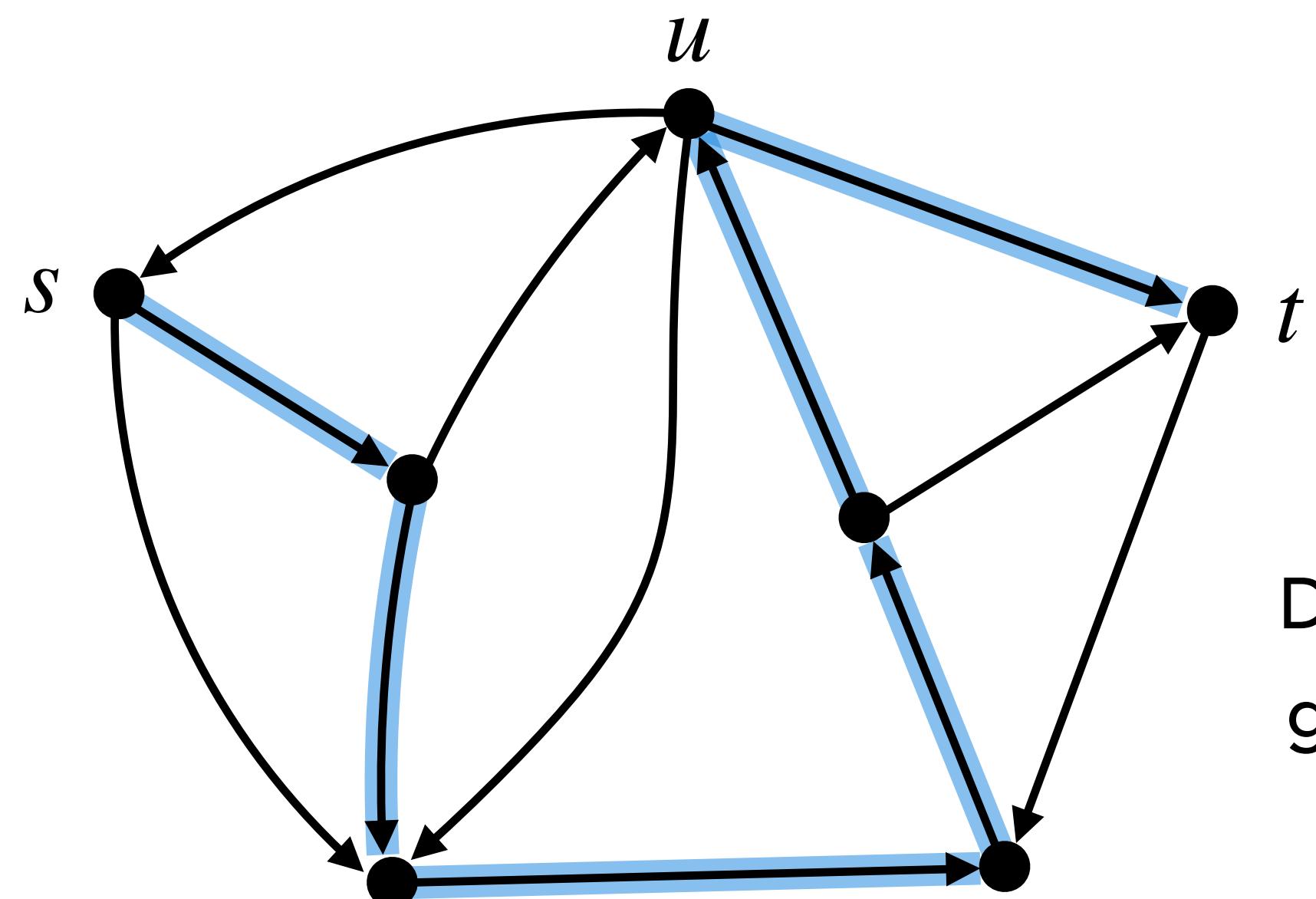
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Rightarrow):

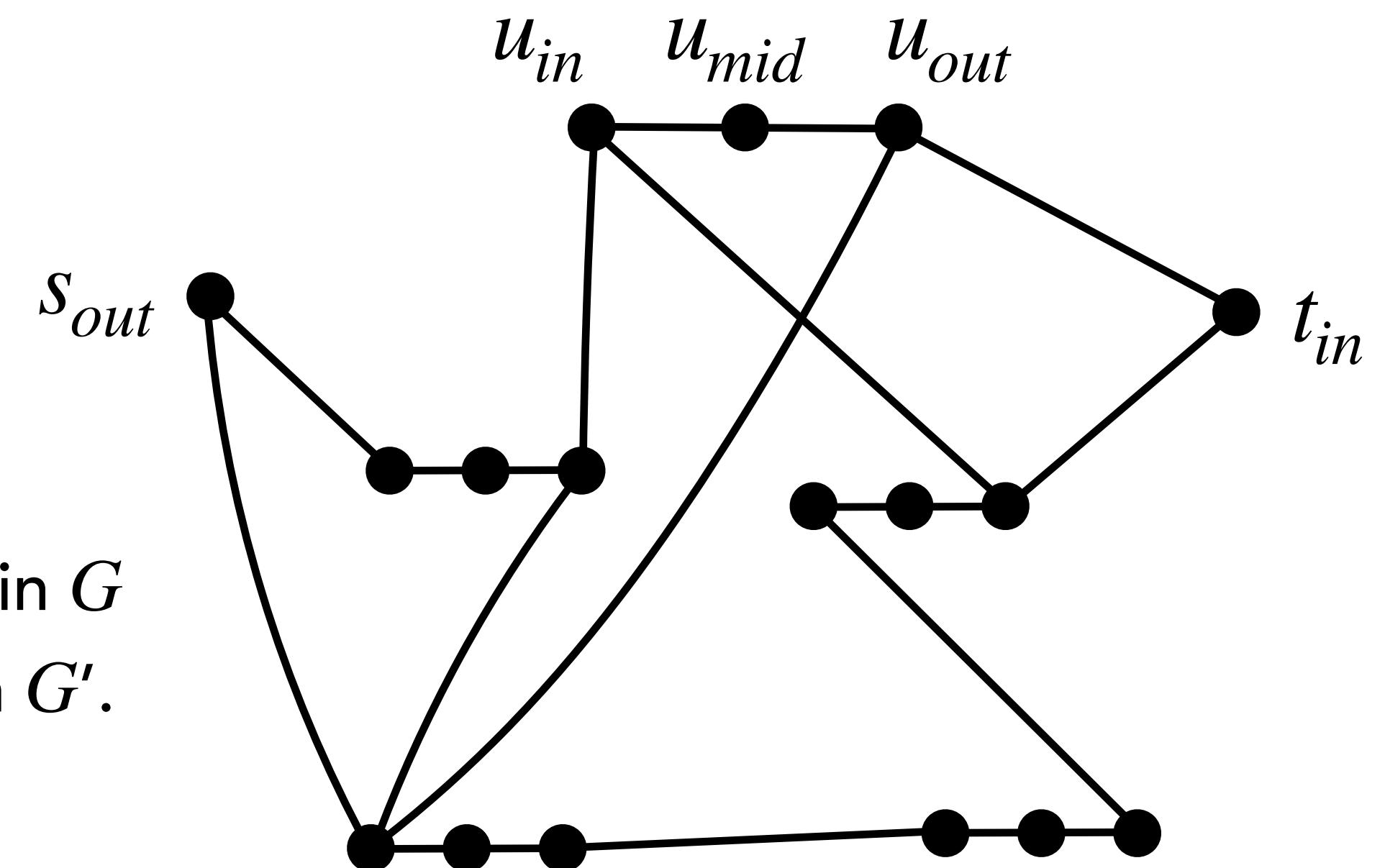


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

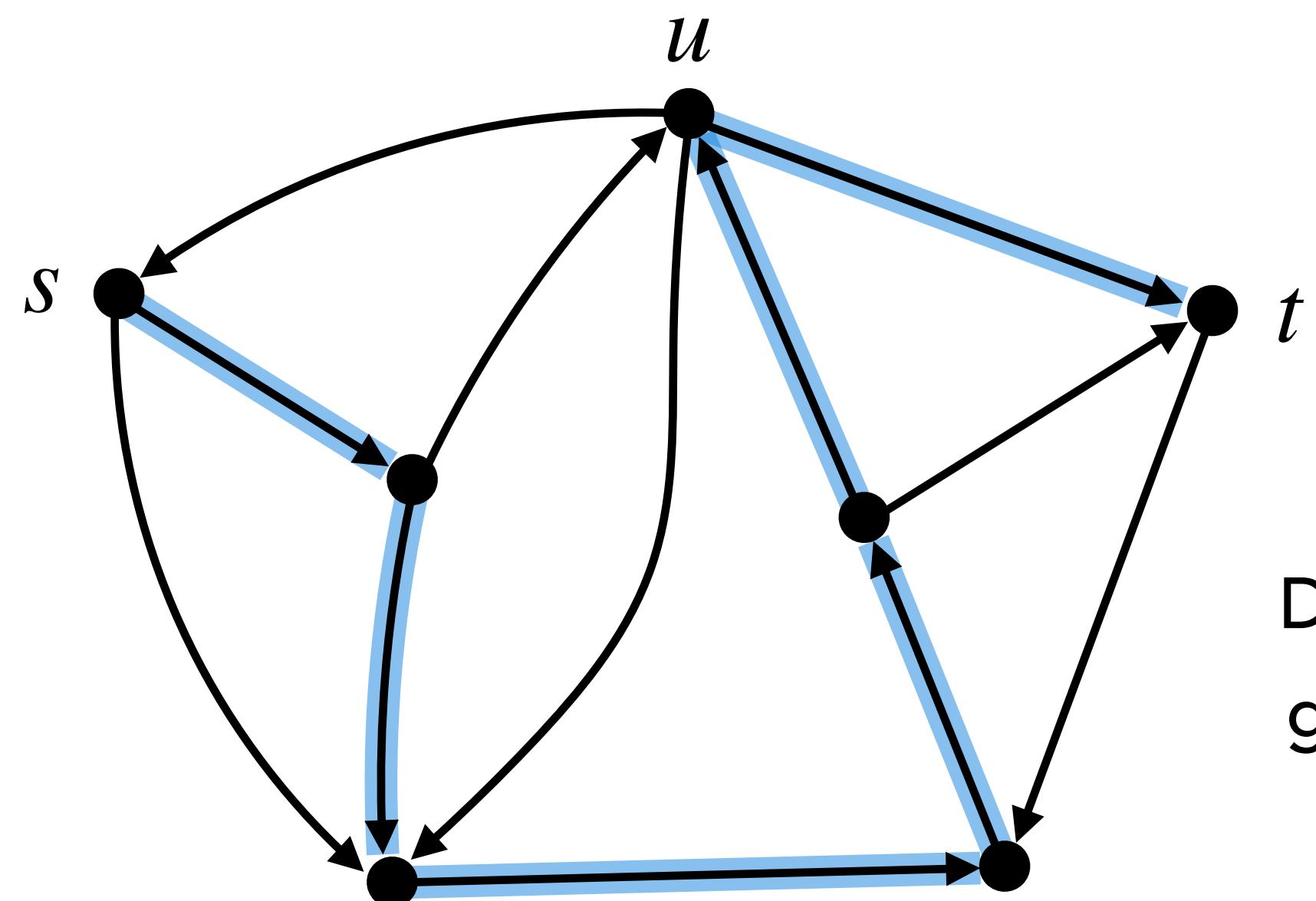


Directed hamiltonian path in G
gives a hamiltonian path in G' .

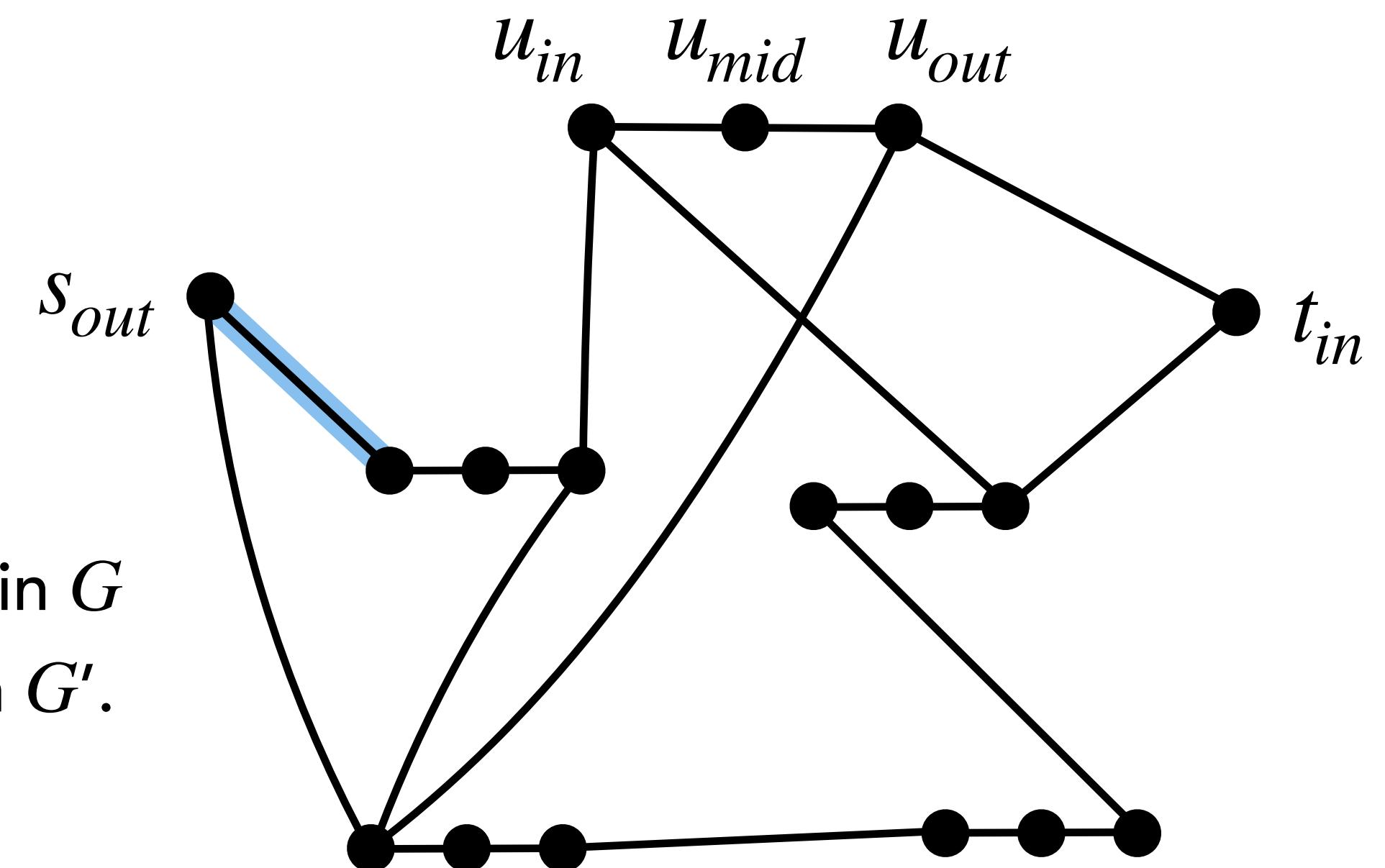


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

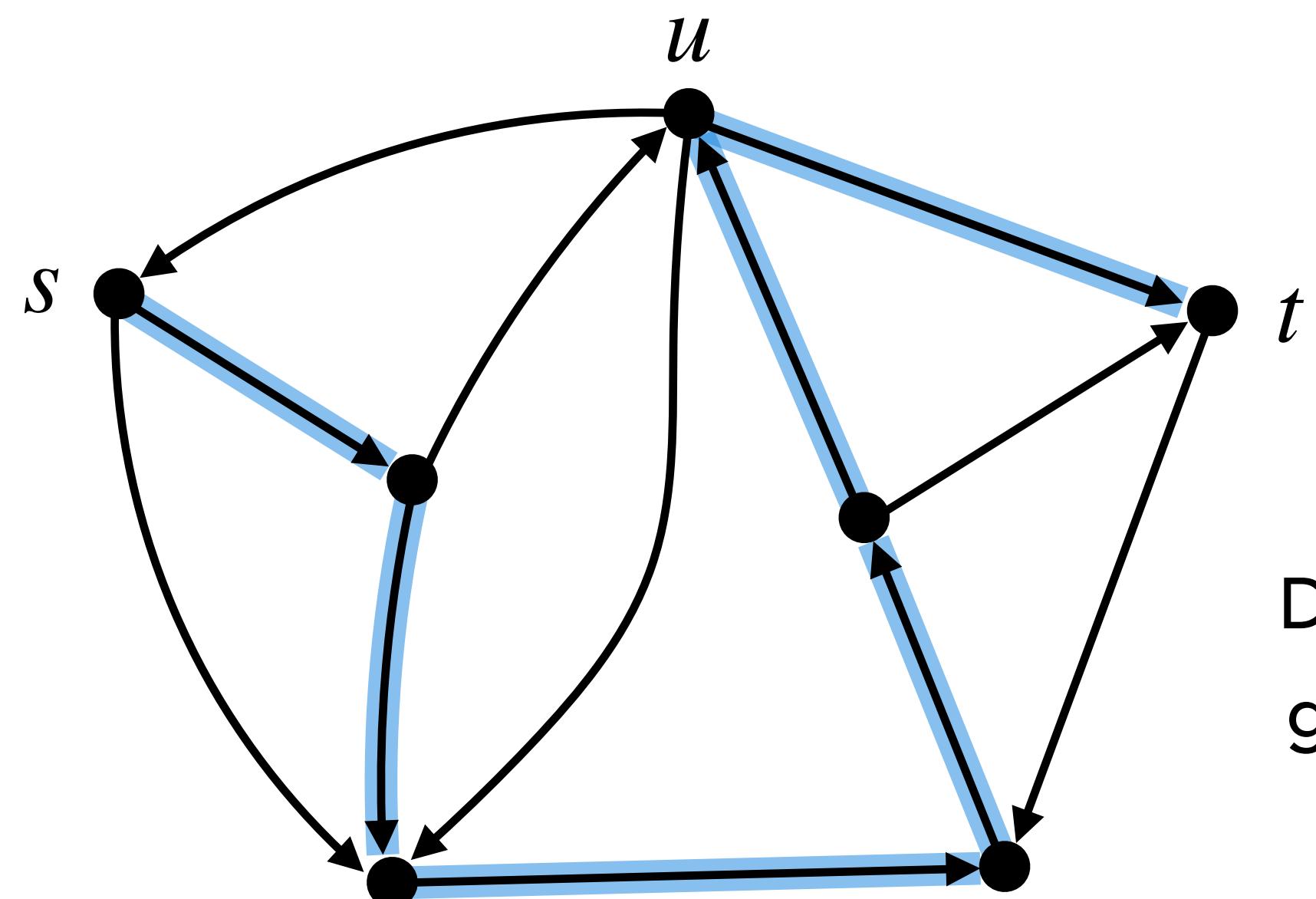


Directed hamiltonian path in G
gives a hamiltonian path in G' .

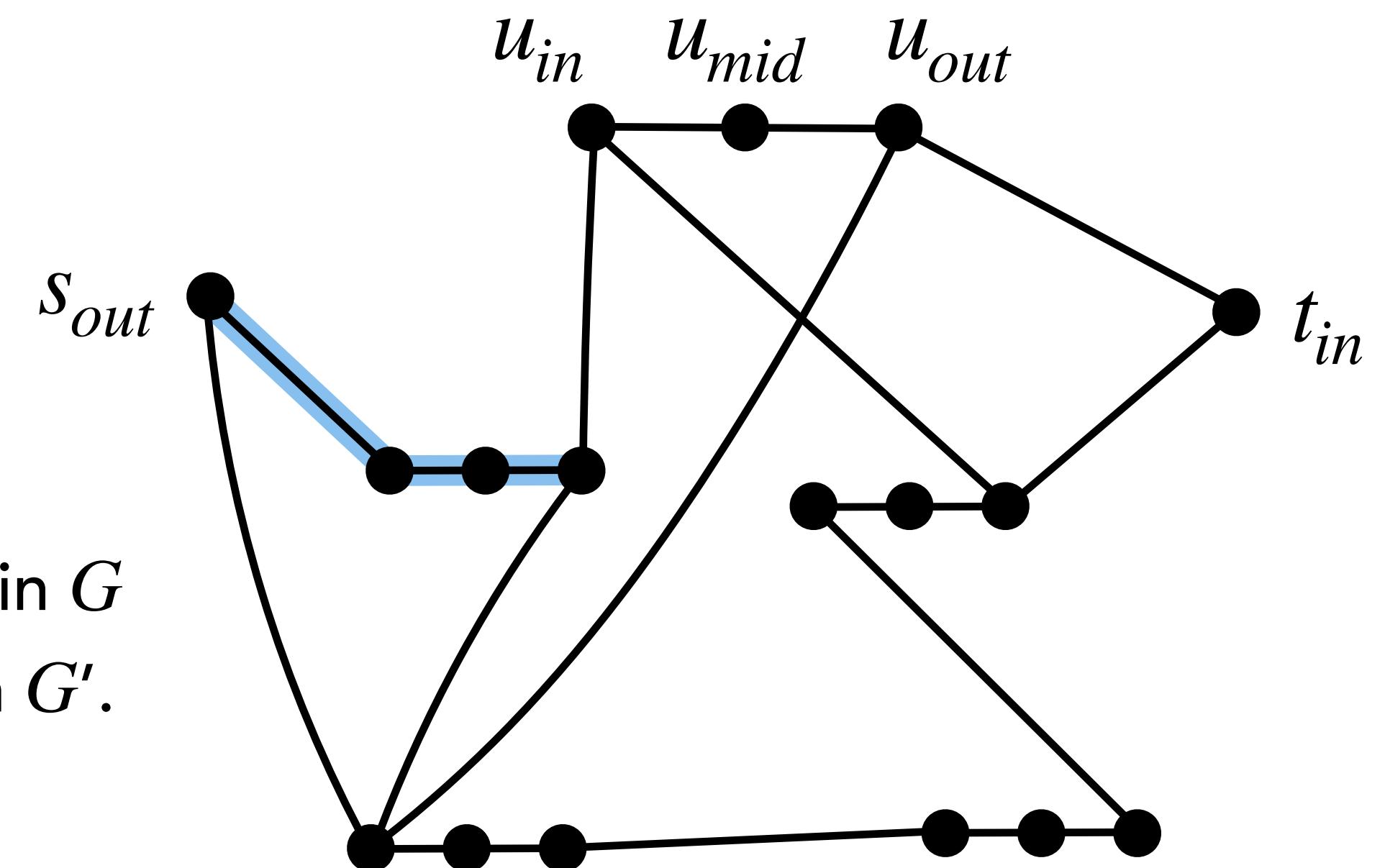


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

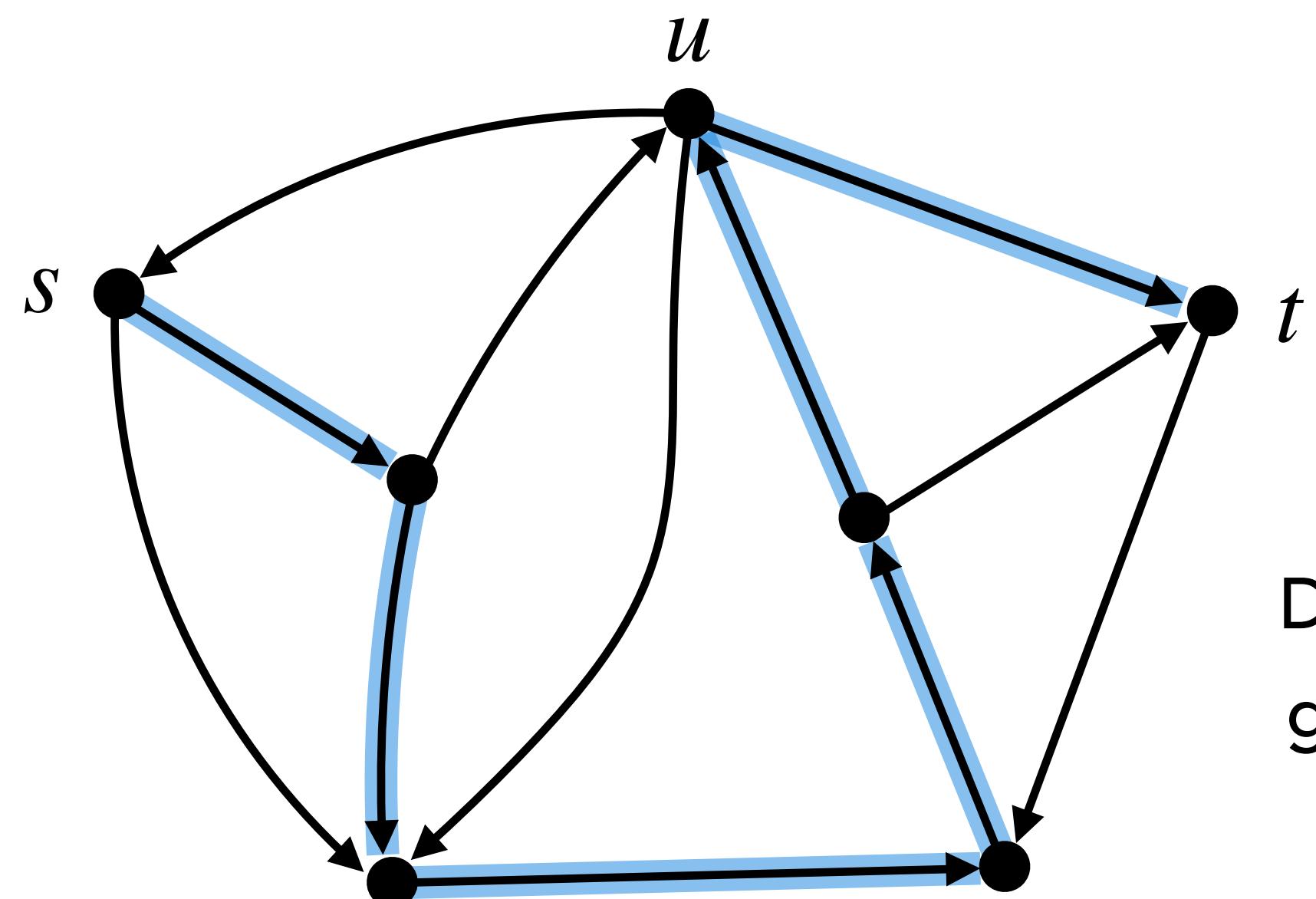


Directed hamiltonian path in G
gives a hamiltonian path in G' .

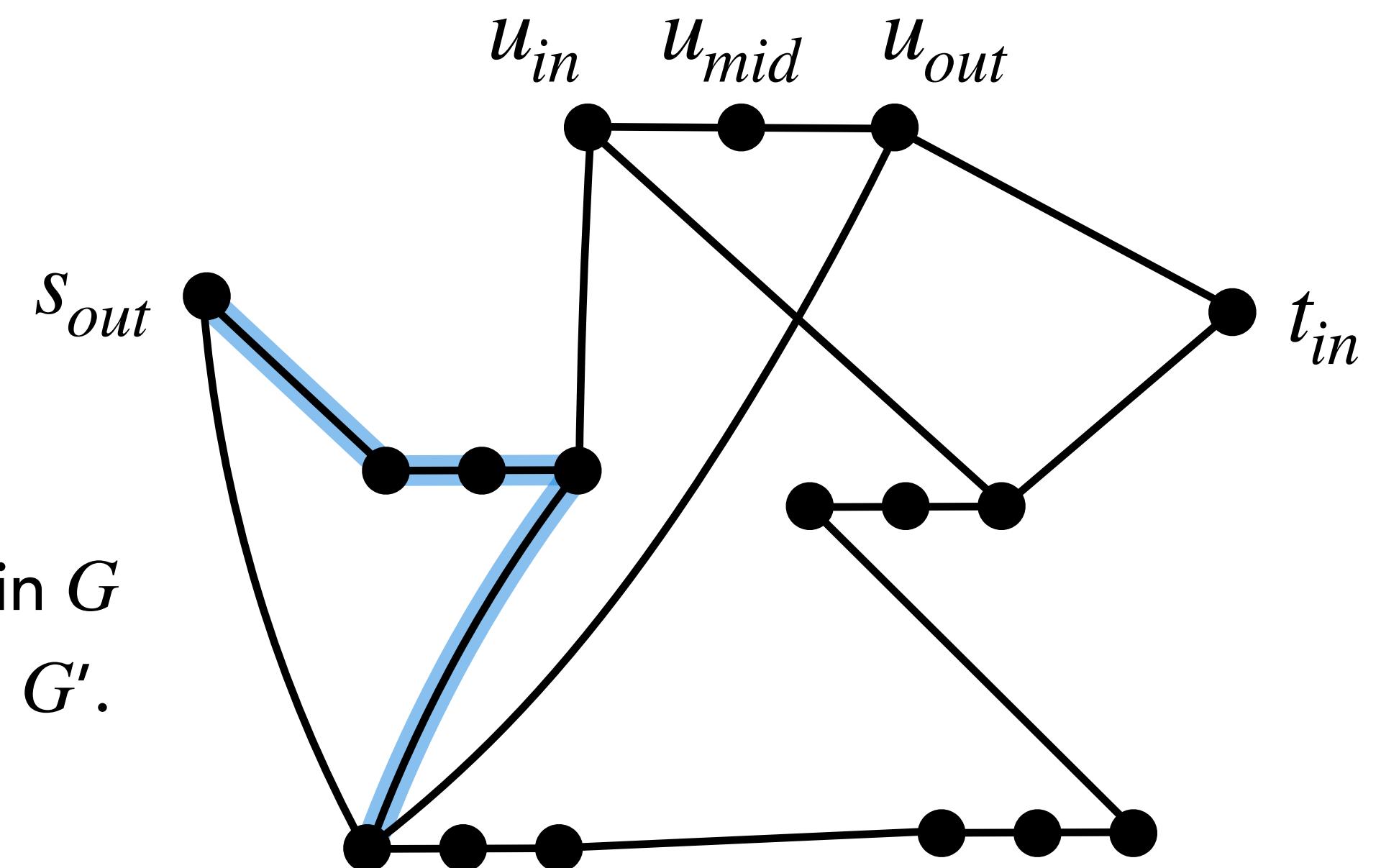


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

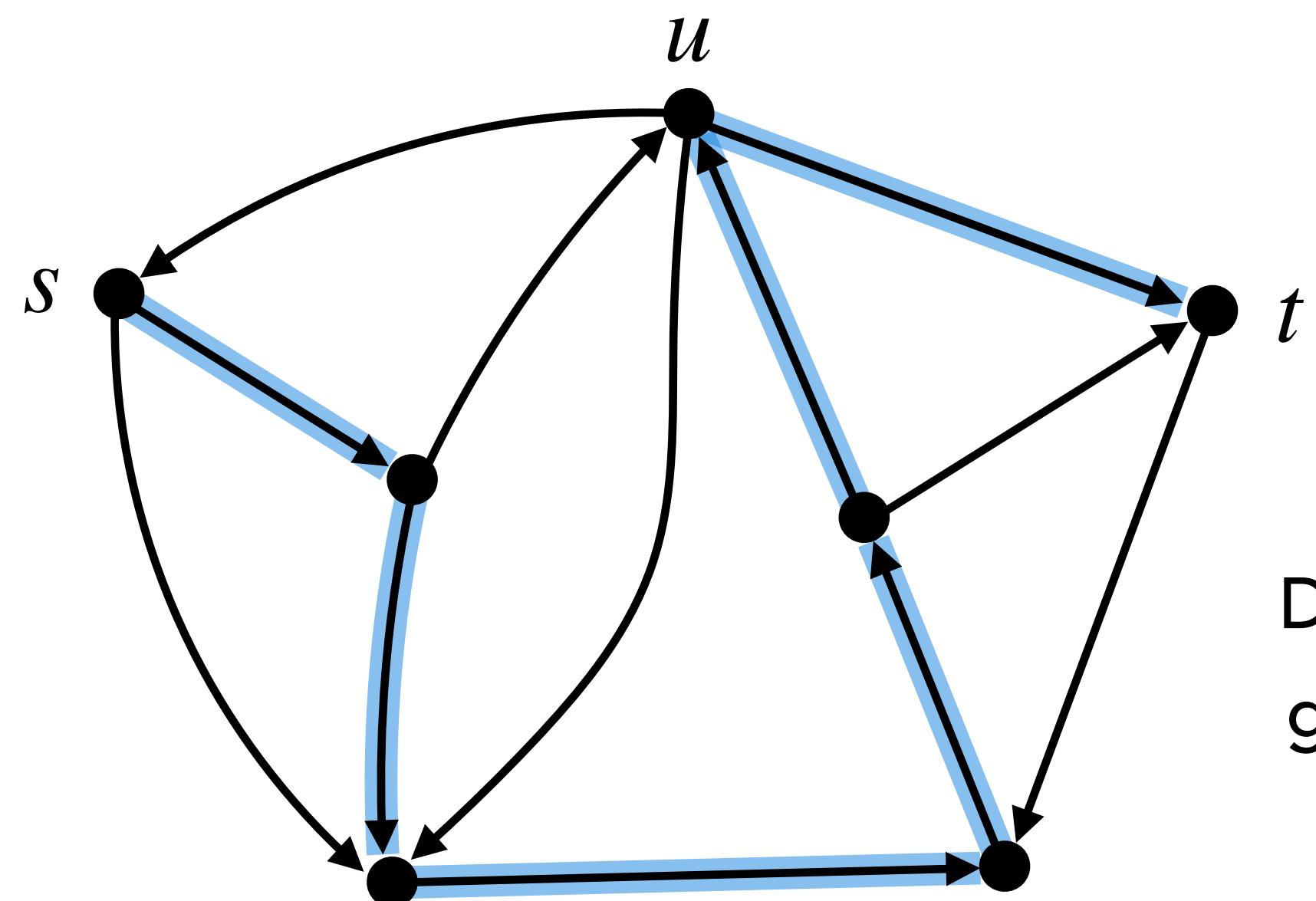


Directed hamiltonian path in G
gives a hamiltonian path in G' .

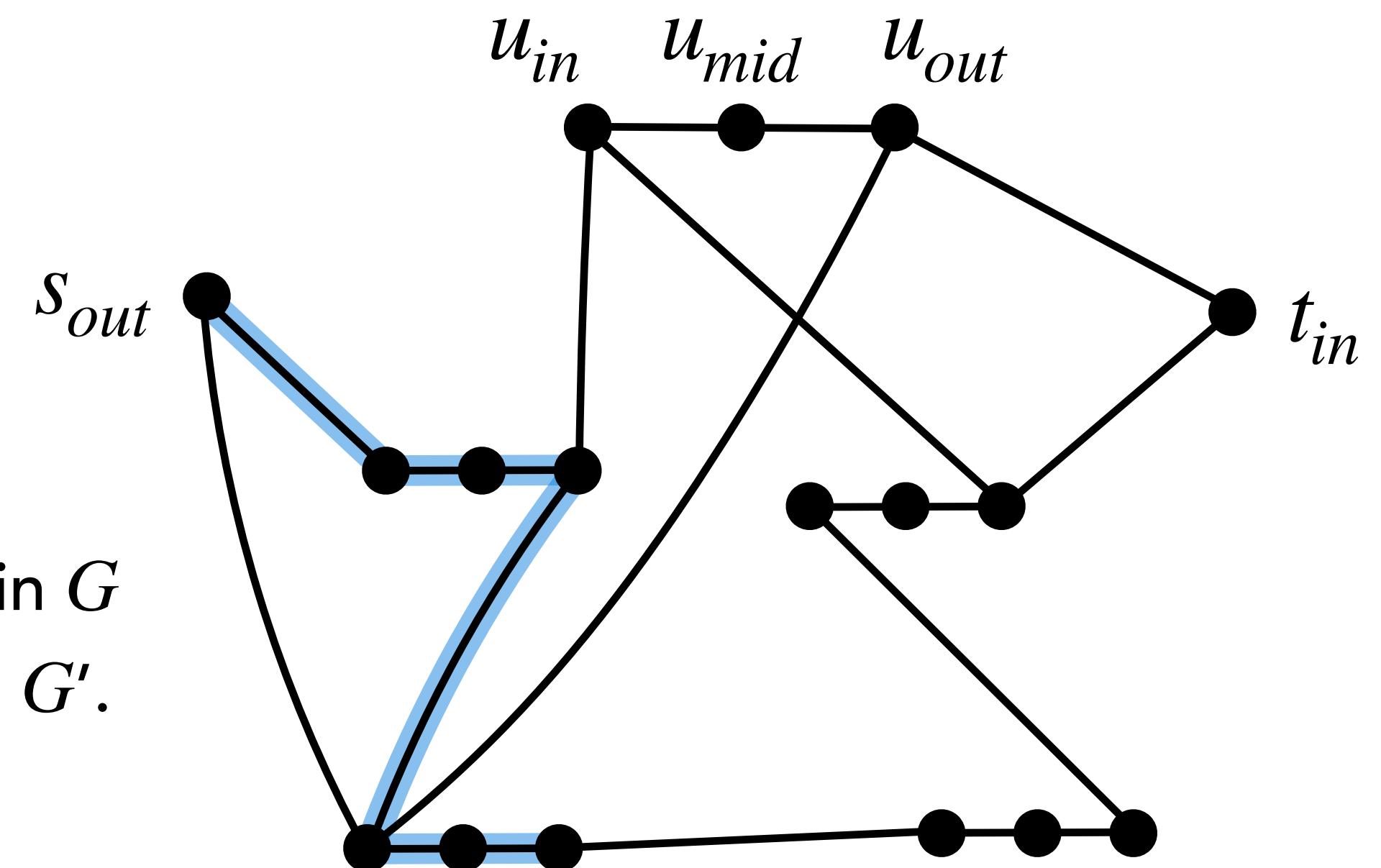


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

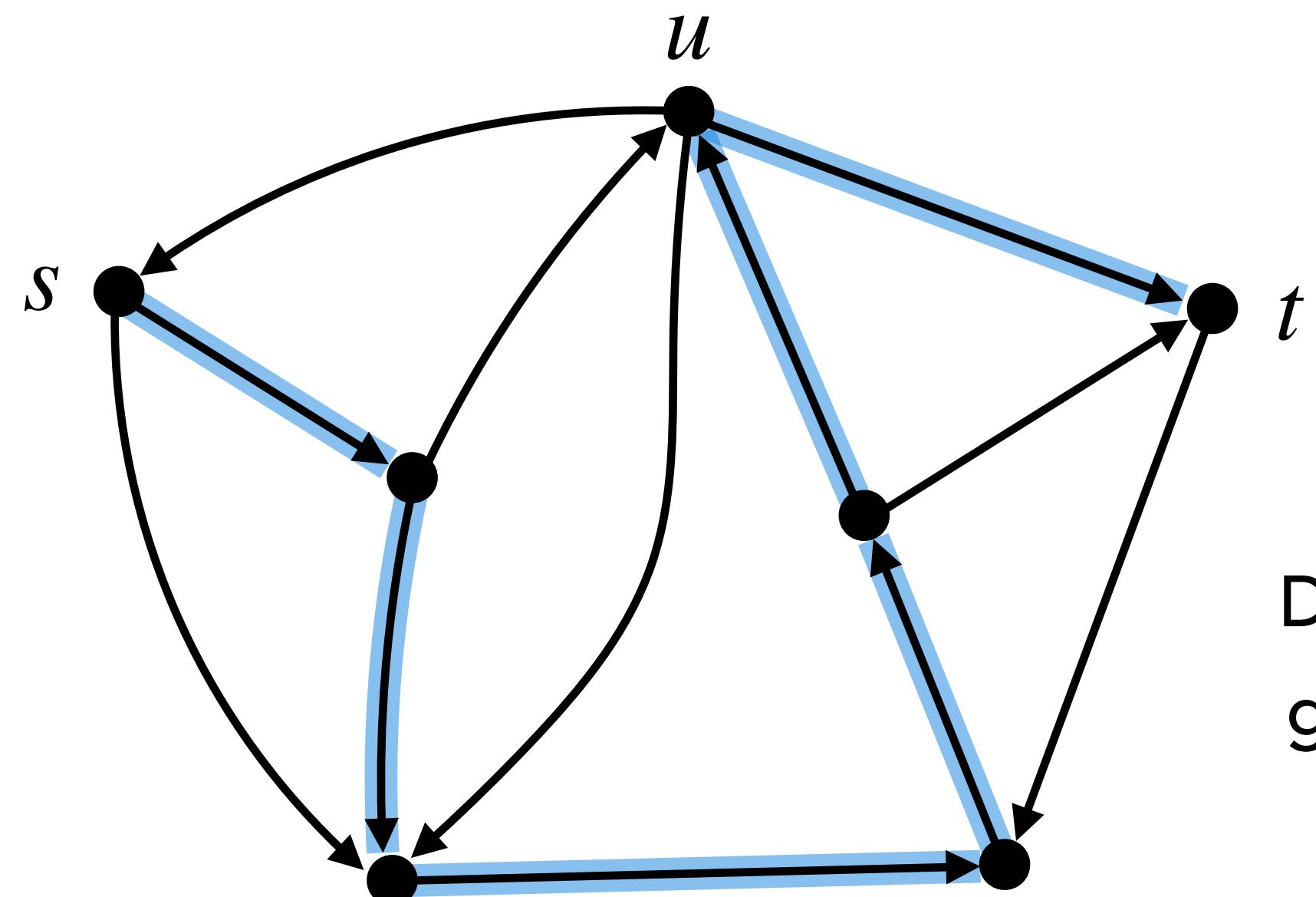


Directed hamiltonian path in G
gives a hamiltonian path in G' .

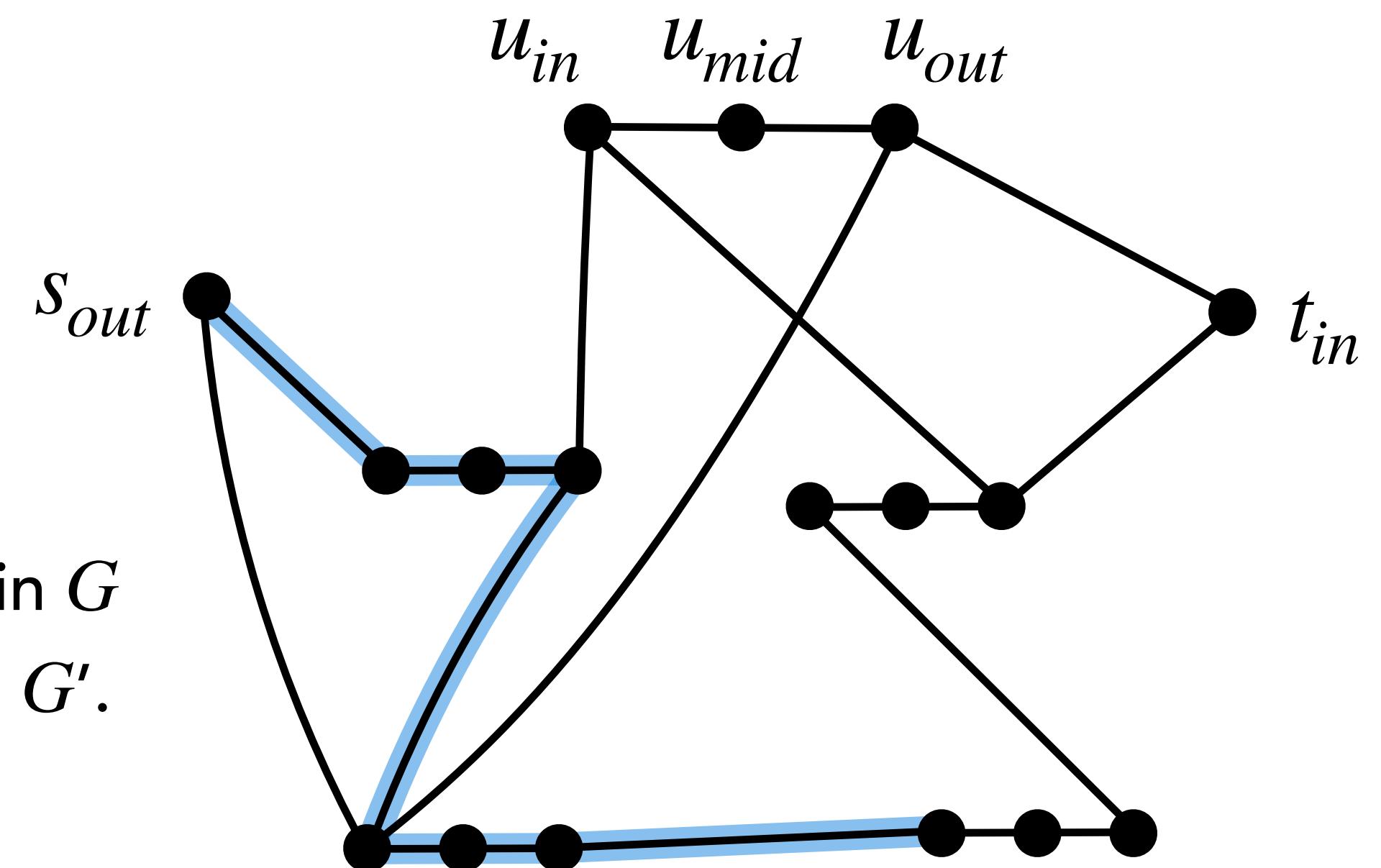


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

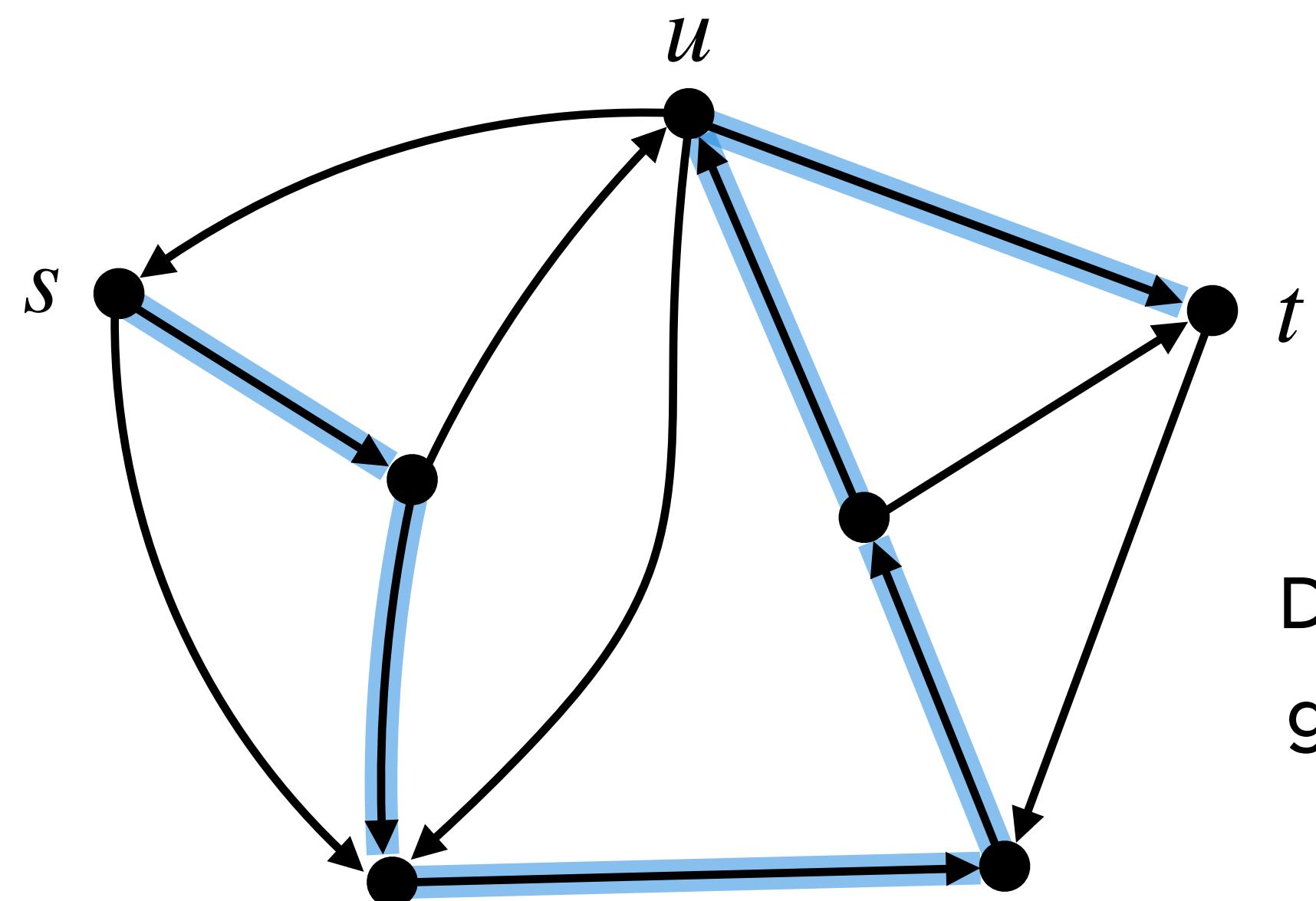


Directed hamiltonian path in G
gives a hamiltonian path in G' .

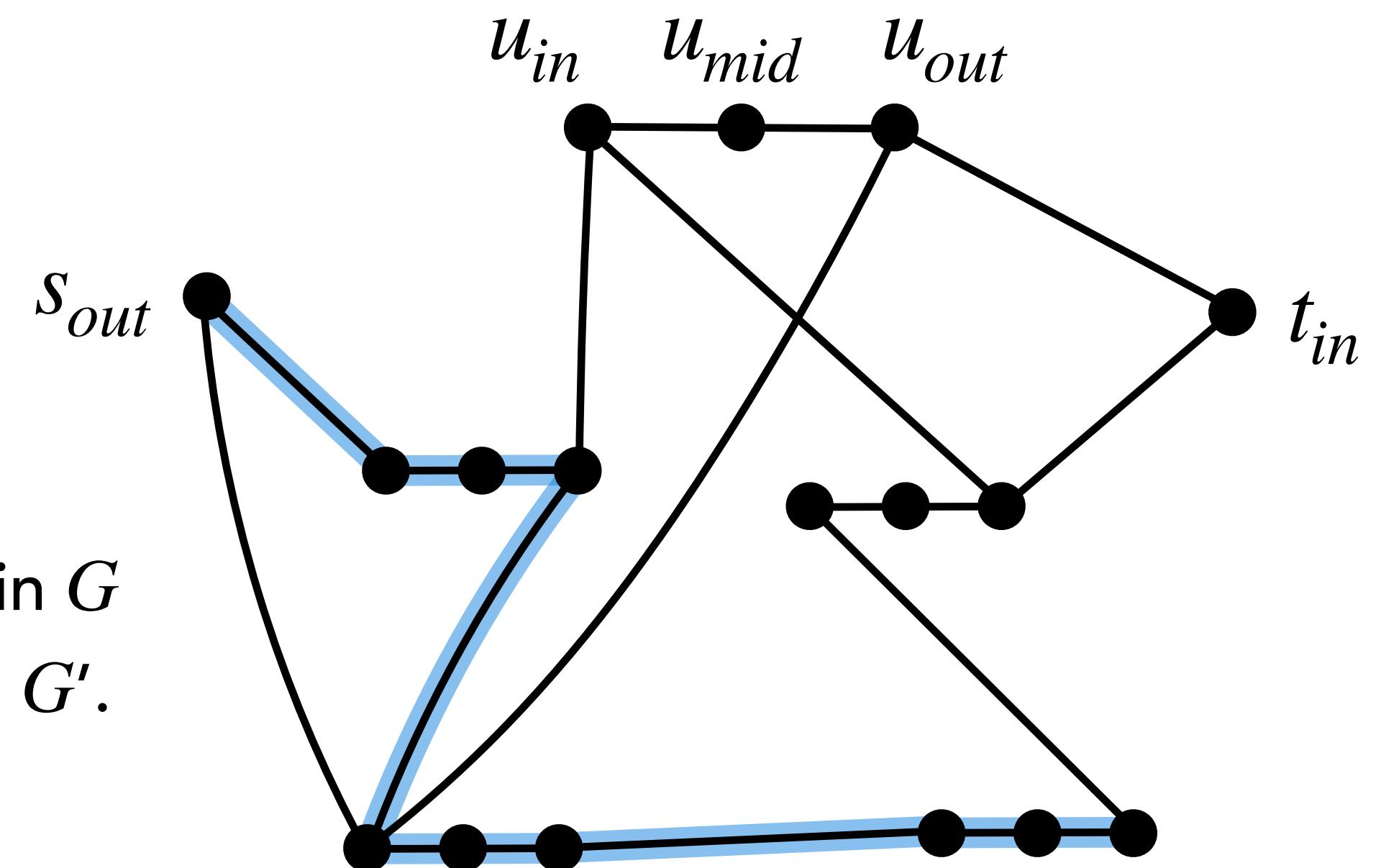


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

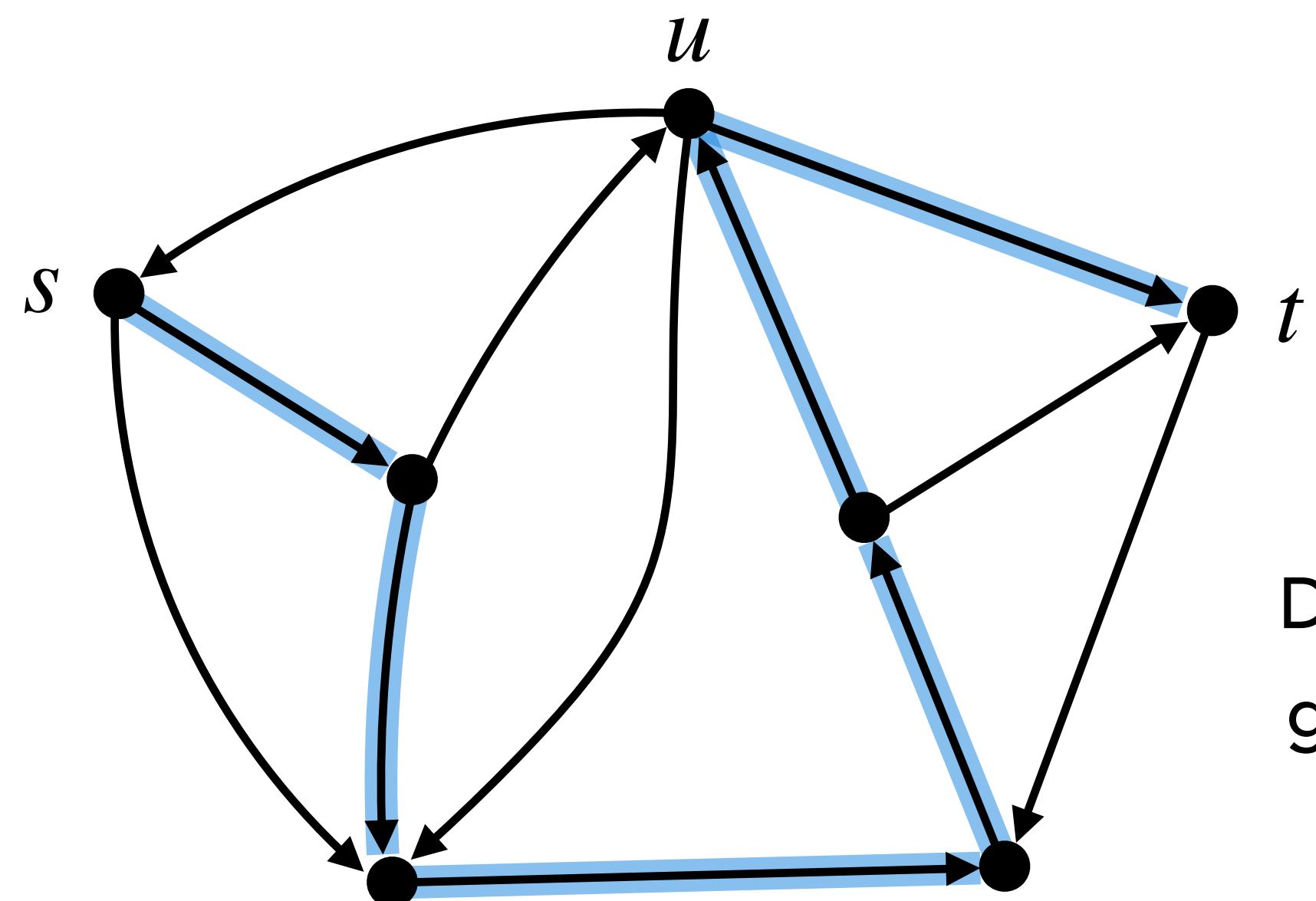


Directed hamiltonian path in G
gives a hamiltonian path in G' .

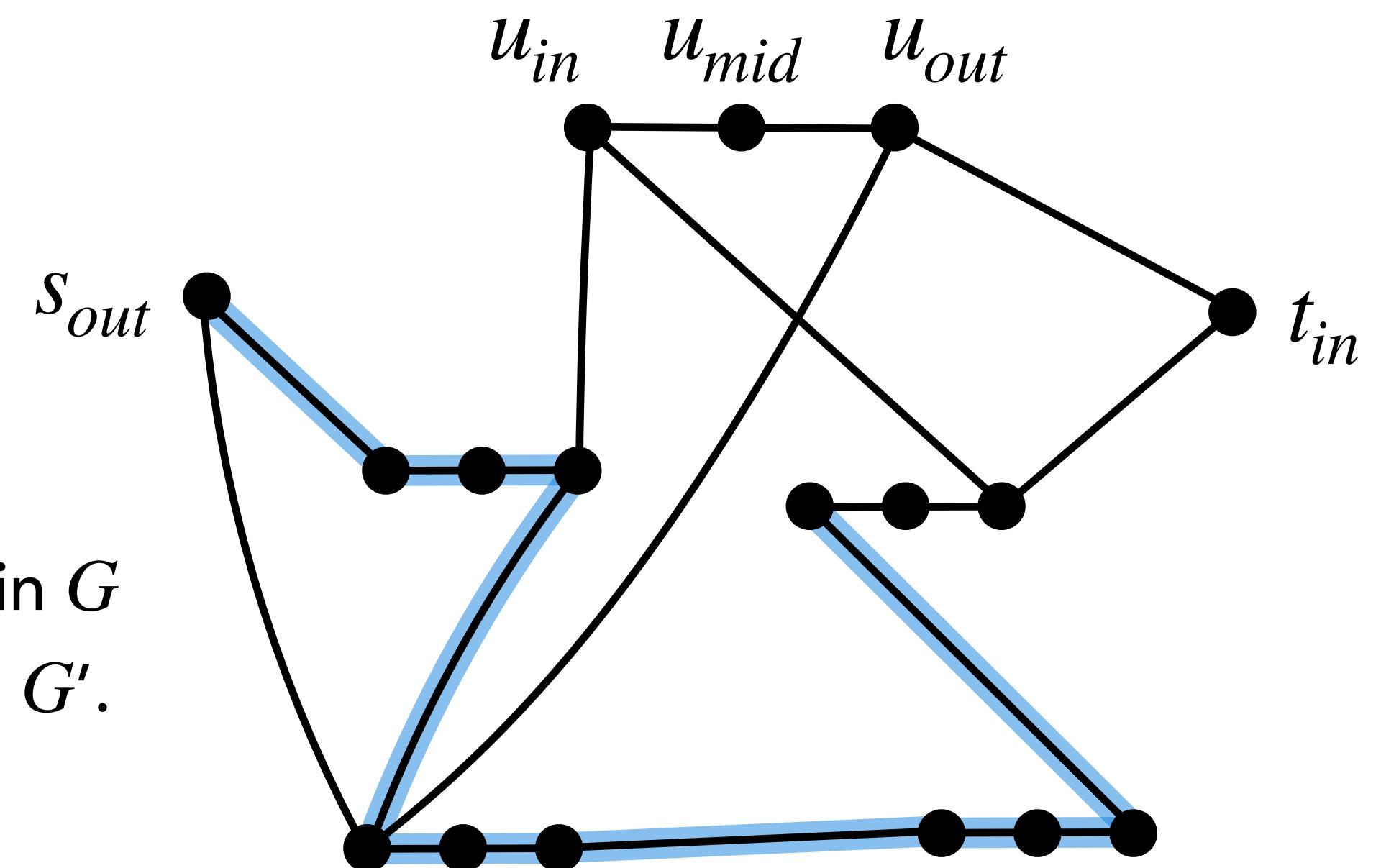


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

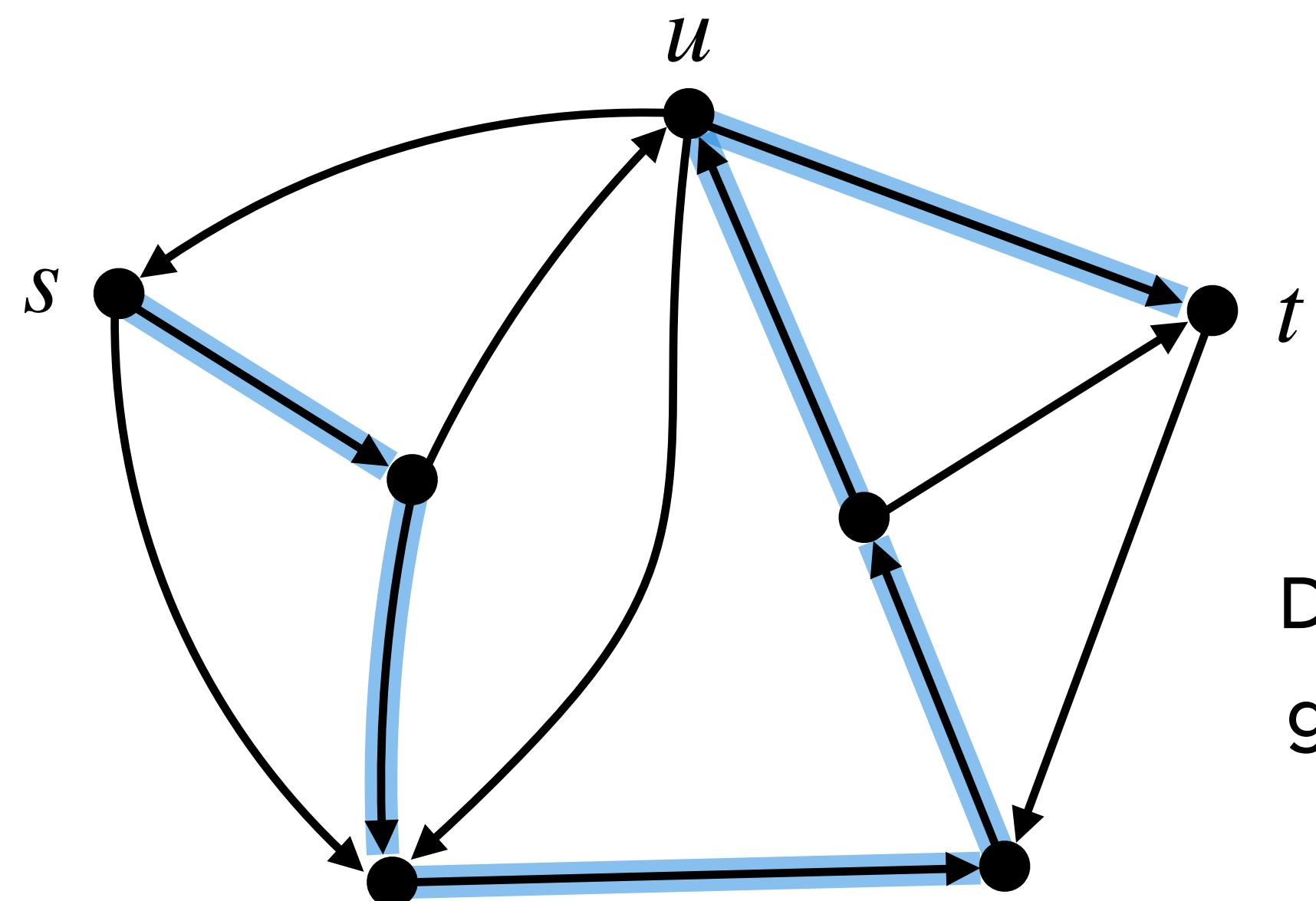


Directed hamiltonian path in G
gives a hamiltonian path in G' .

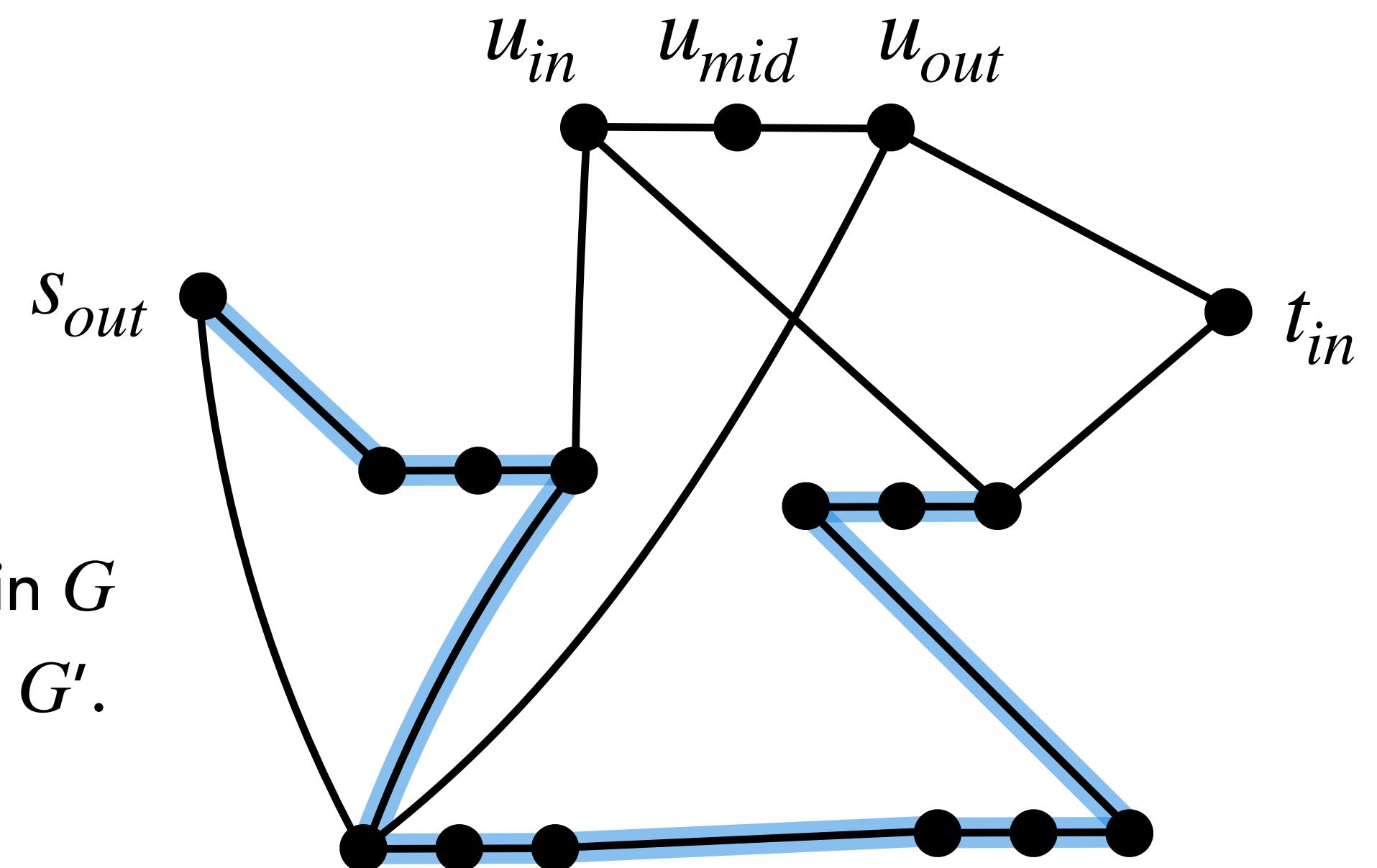


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

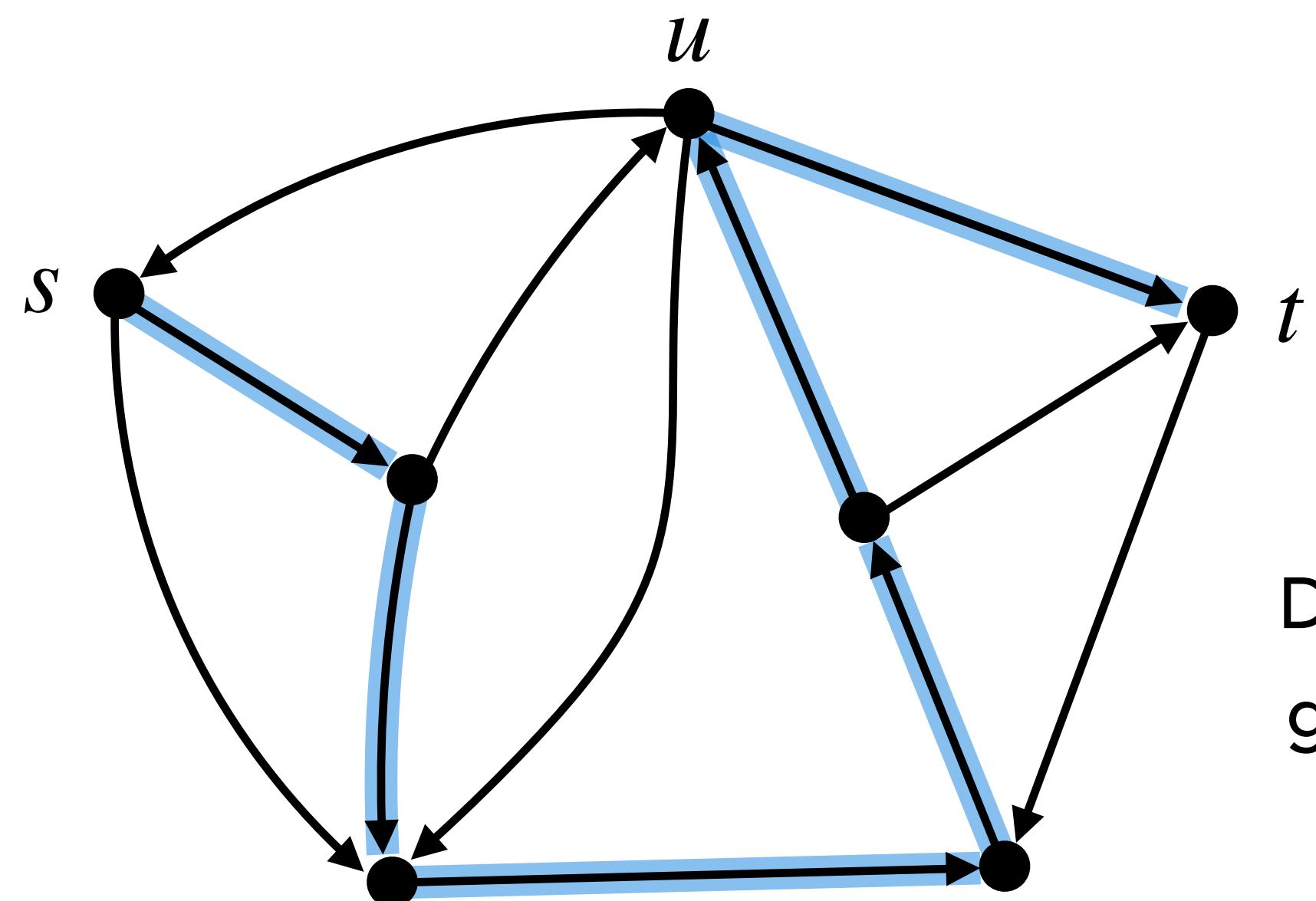


Directed hamiltonian path in G
gives a hamiltonian path in G' .

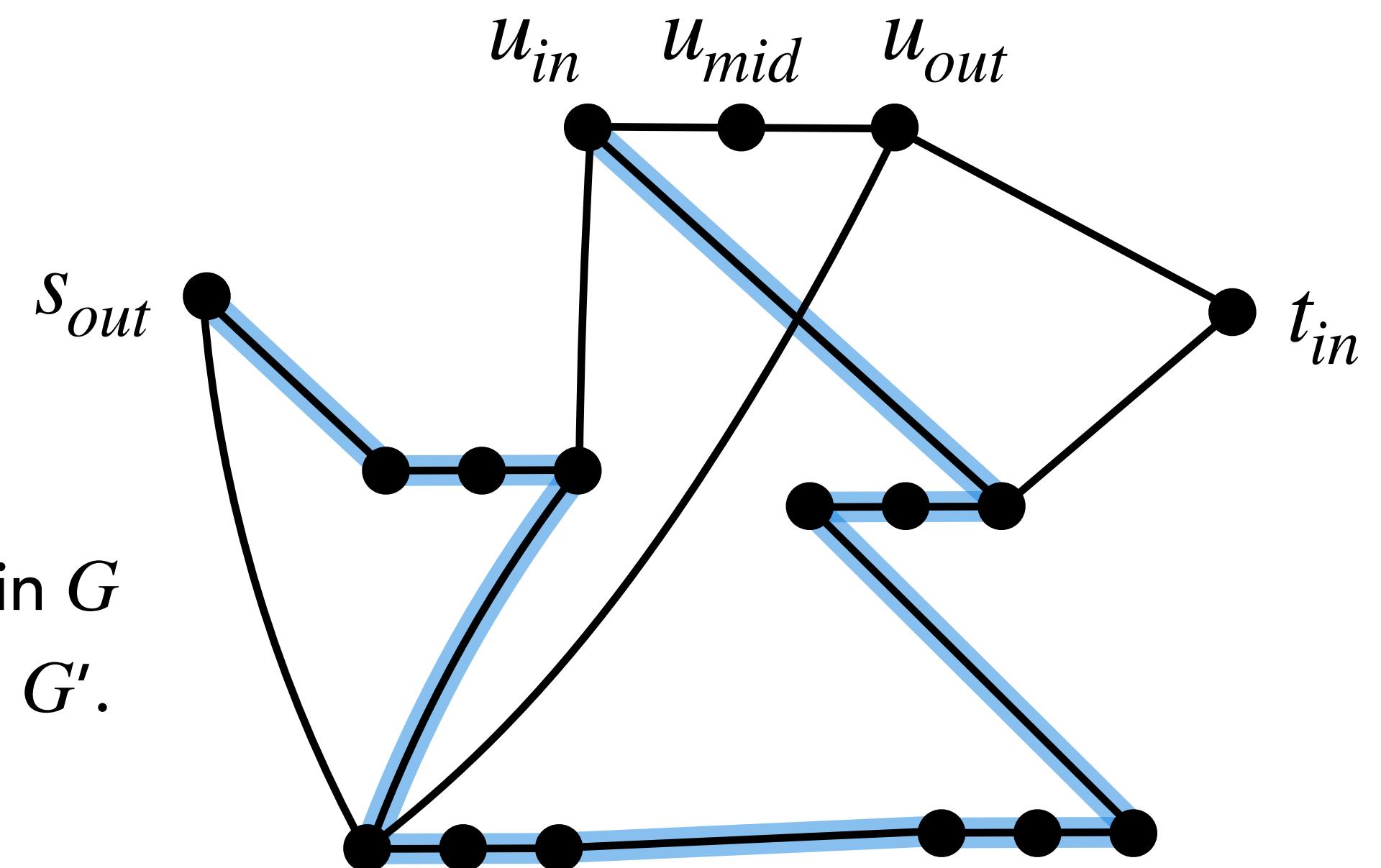


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

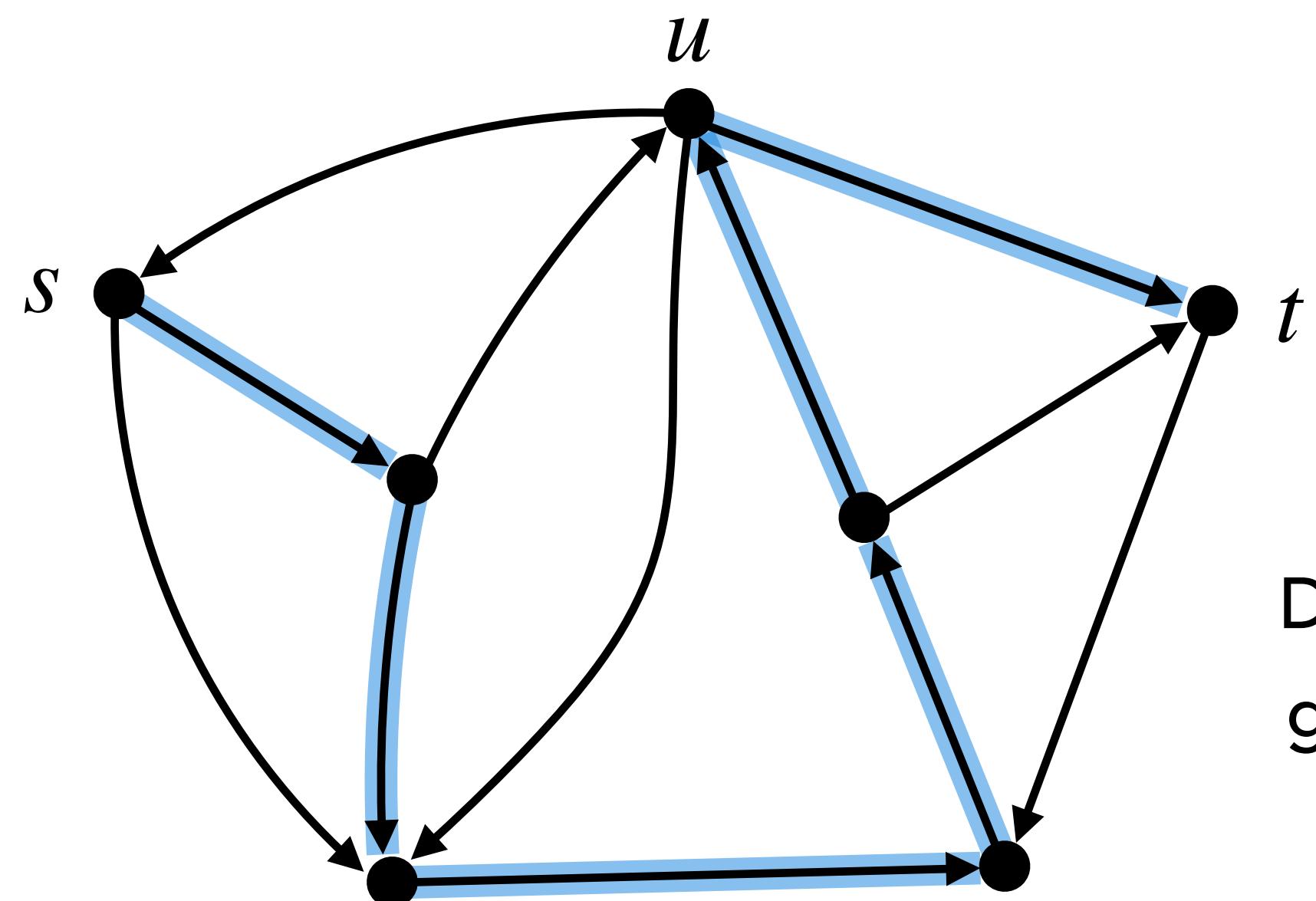


Directed hamiltonian path in G
gives a hamiltonian path in G' .

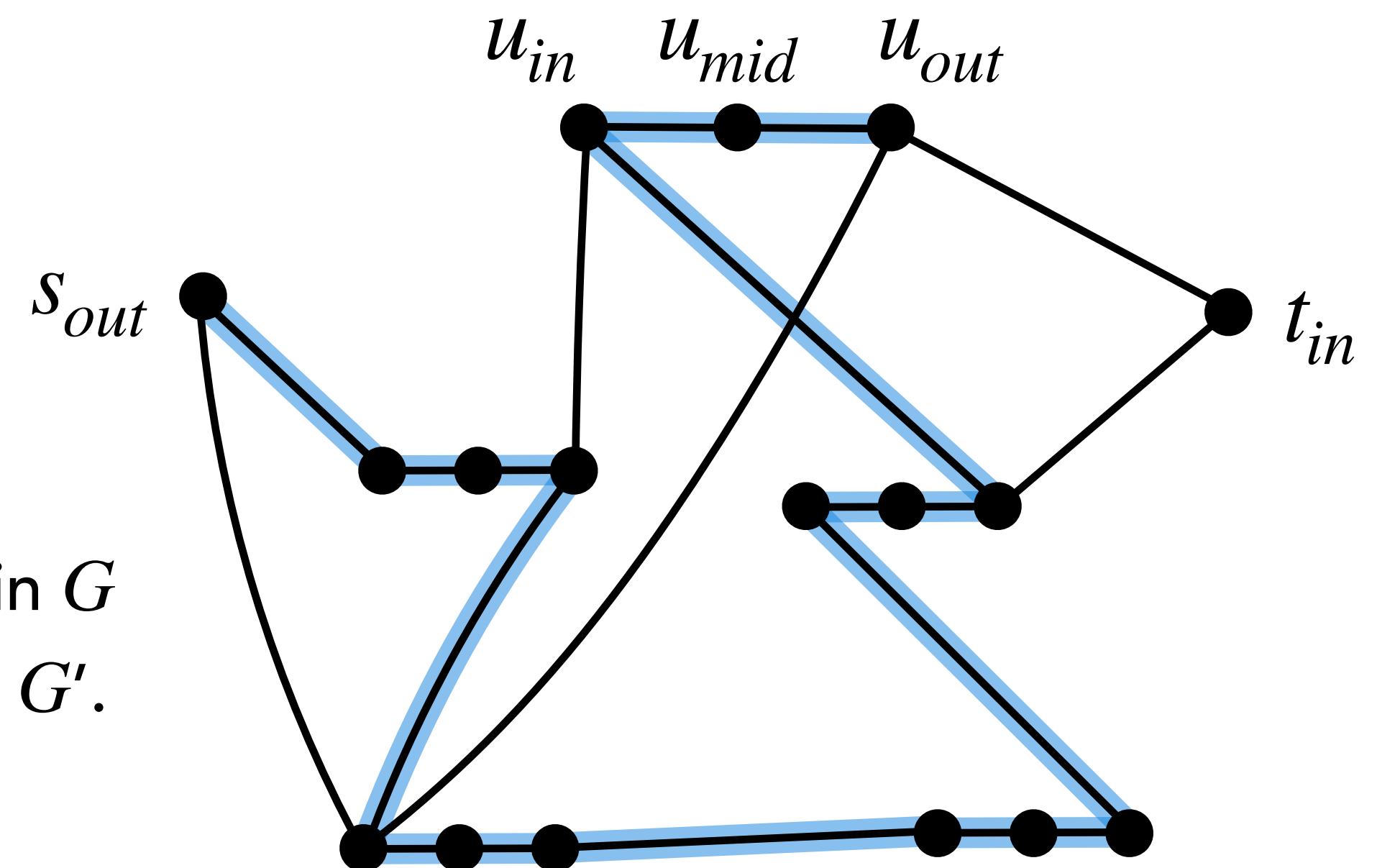


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

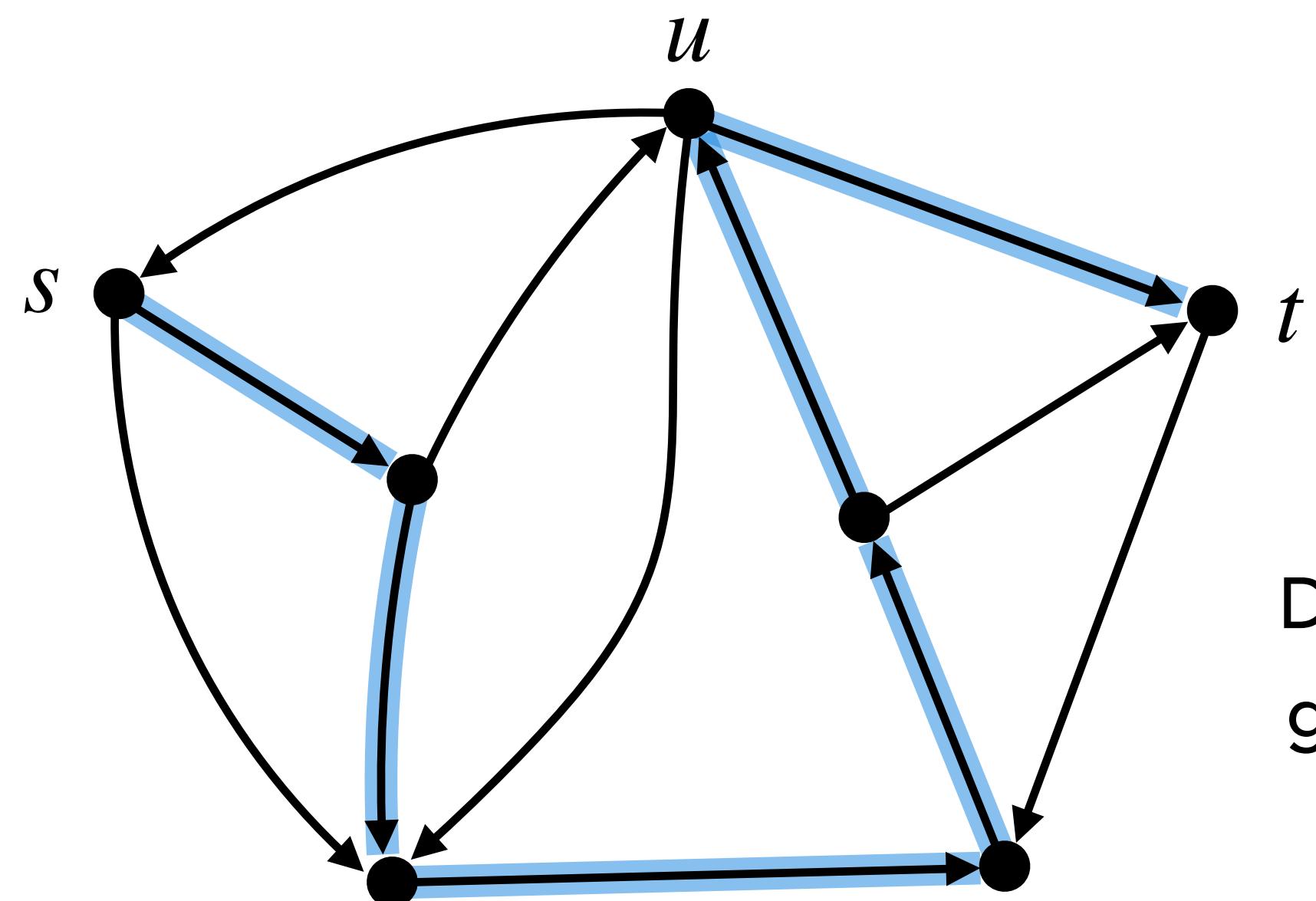


Directed hamiltonian path in G
gives a hamiltonian path in G' .

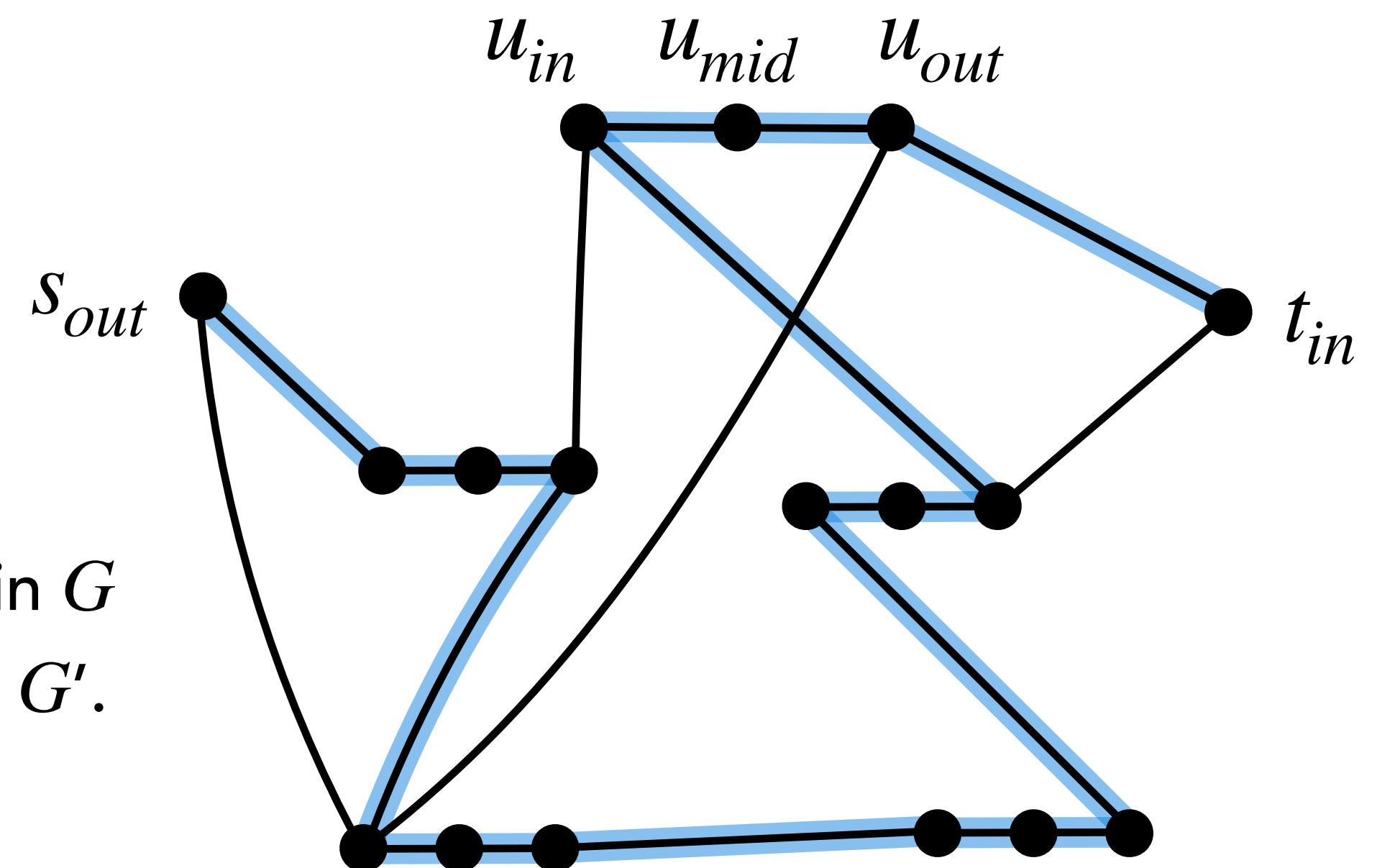


$\text{DirHamPath} \leq_p \text{HamPath}$

Correctness of reduction (\Rightarrow):

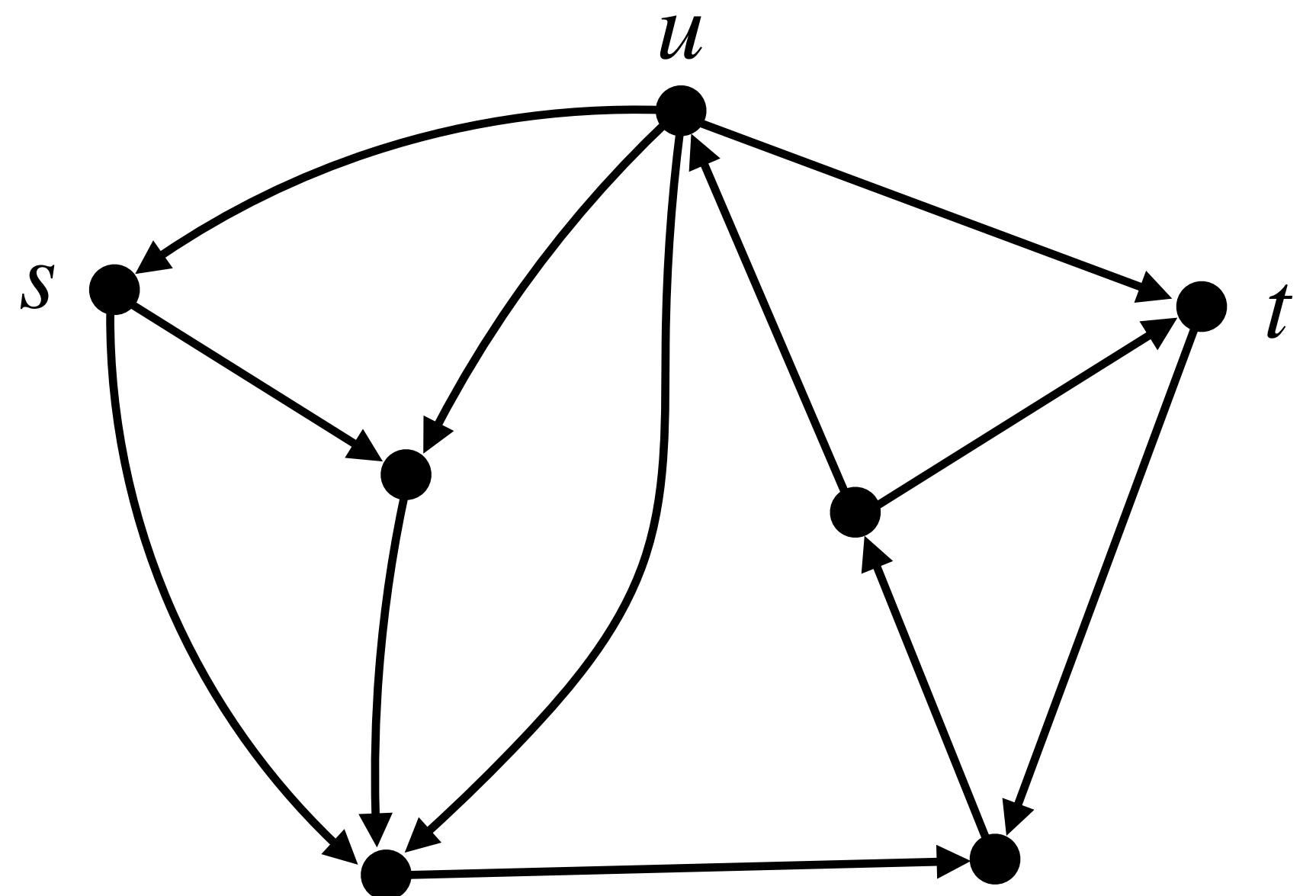


Directed hamiltonian path in G
gives a hamiltonian path in G' .



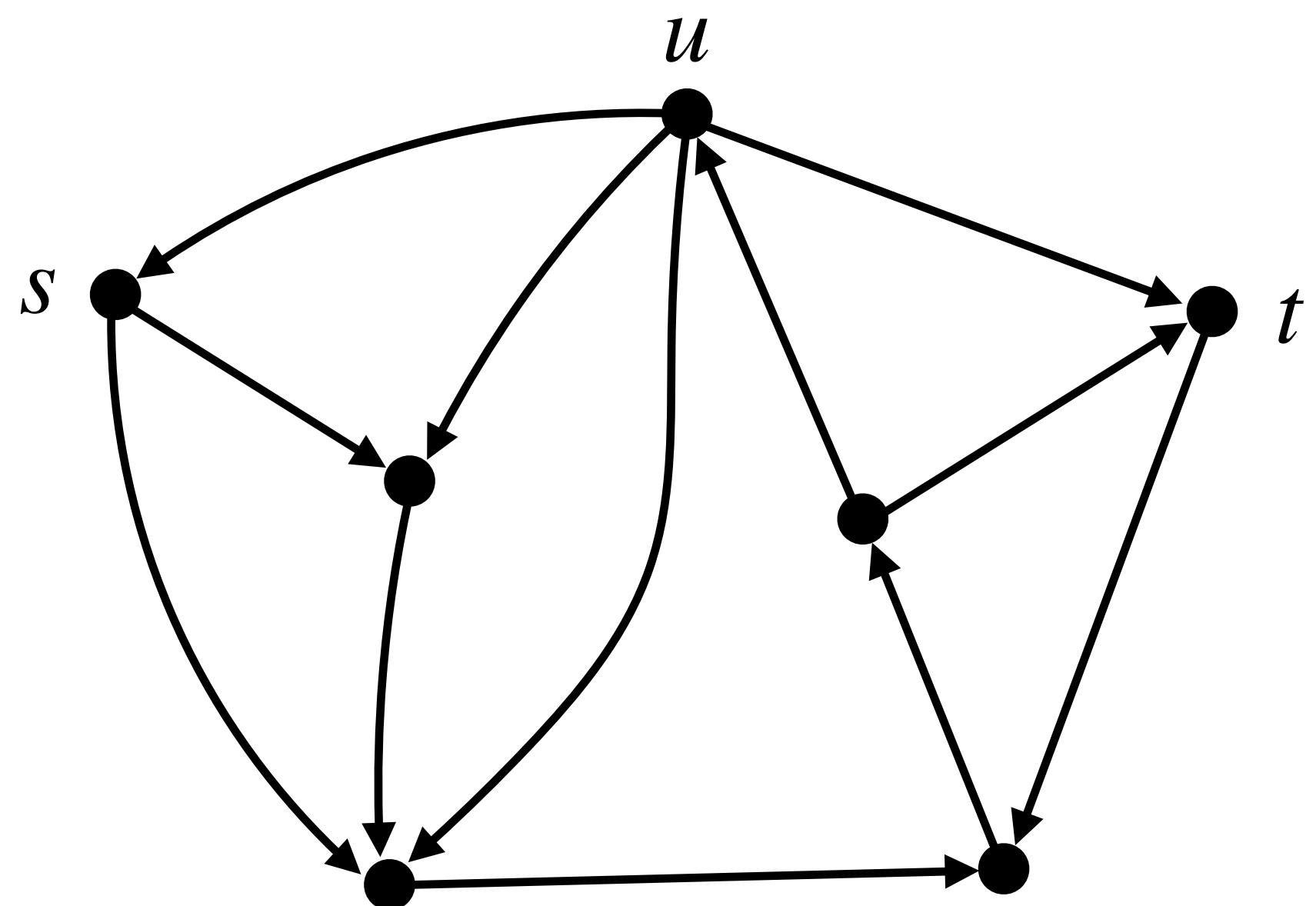
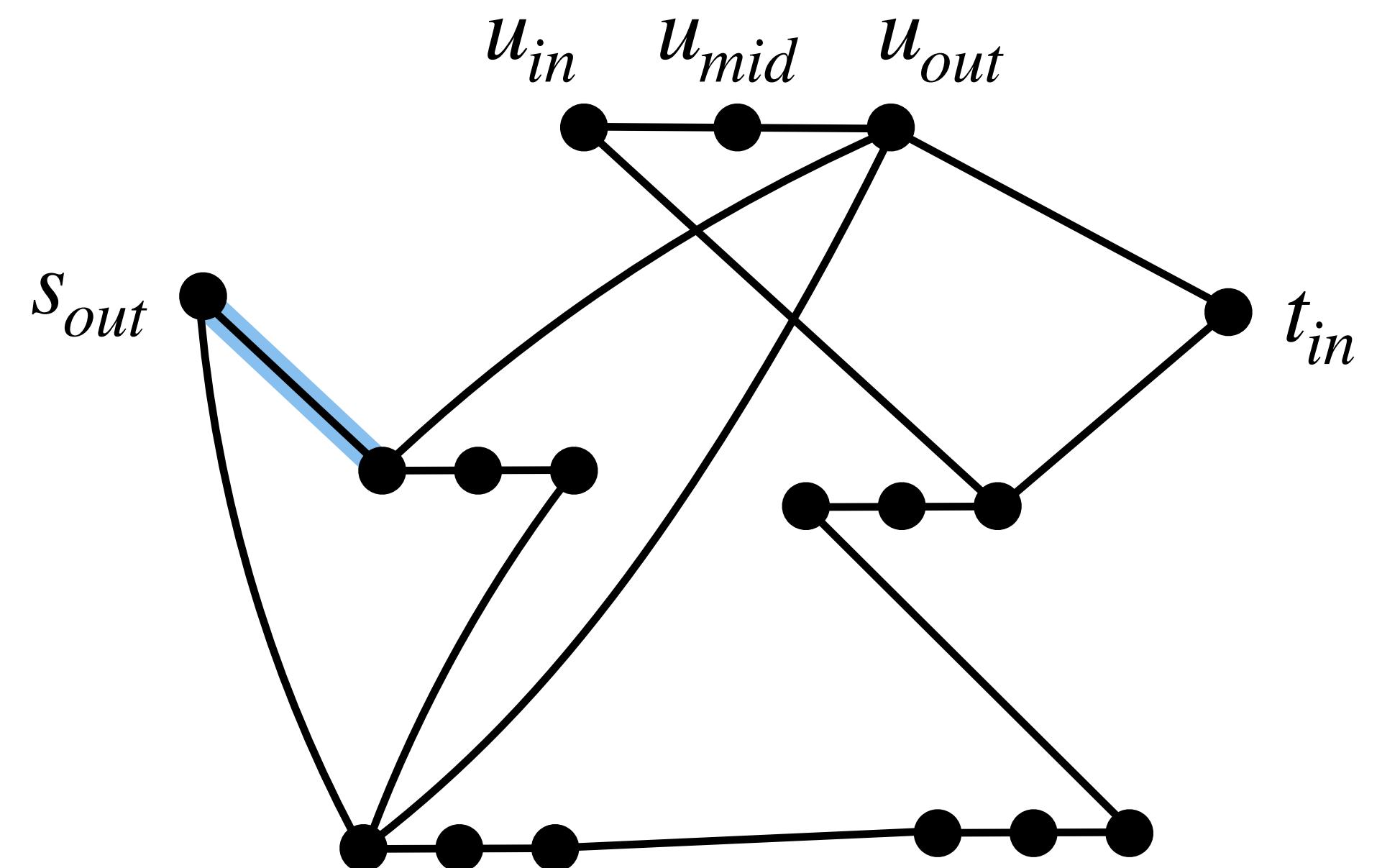
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



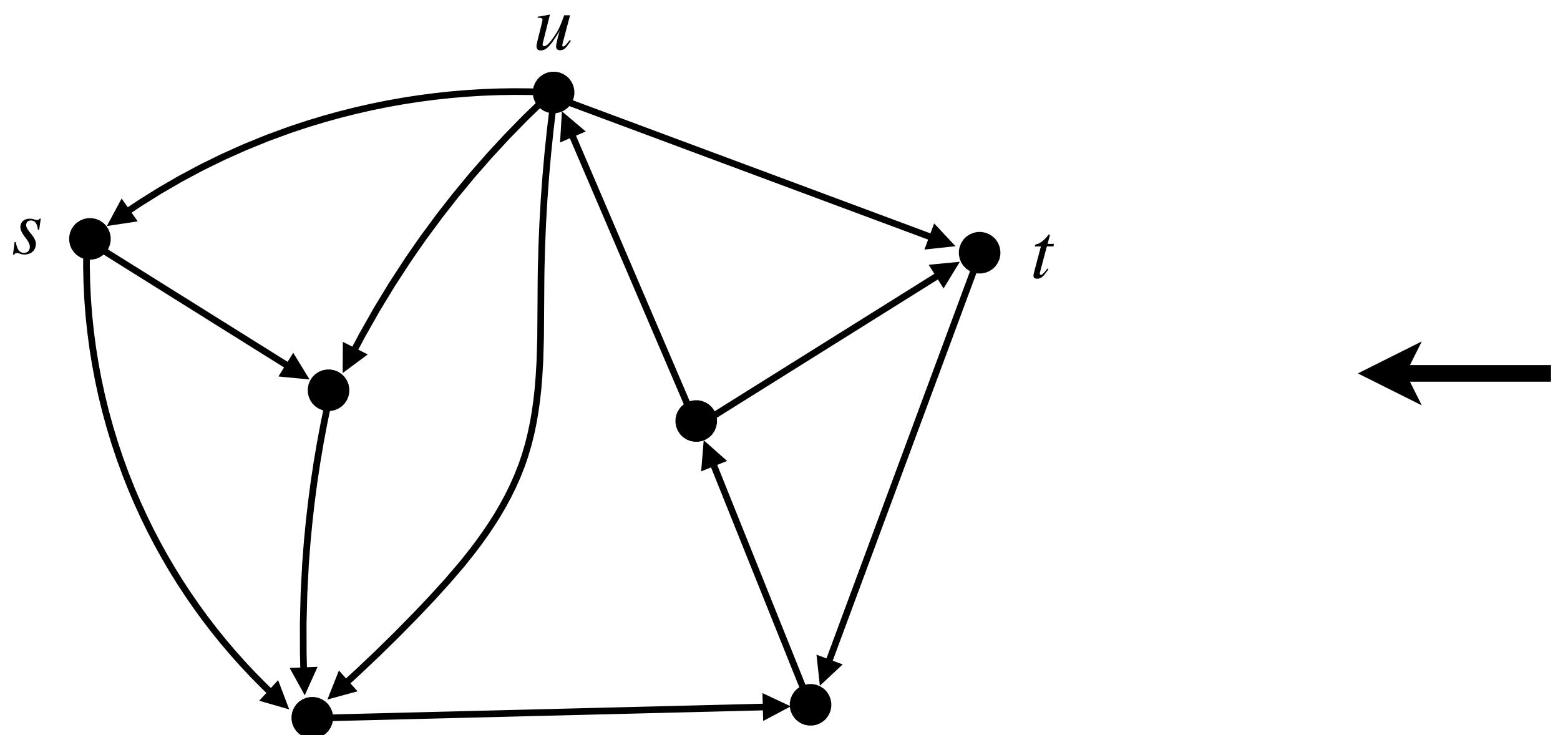
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



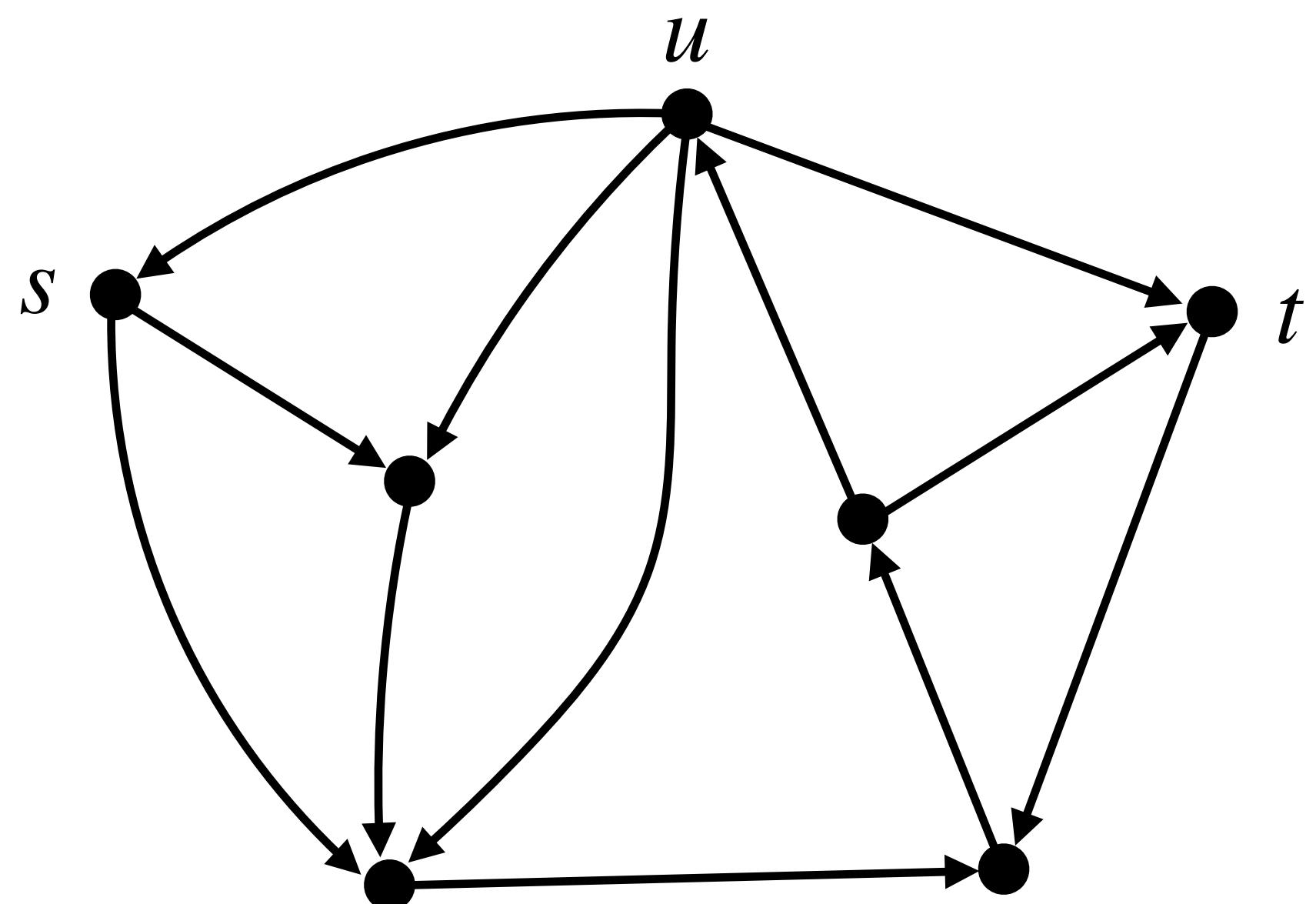
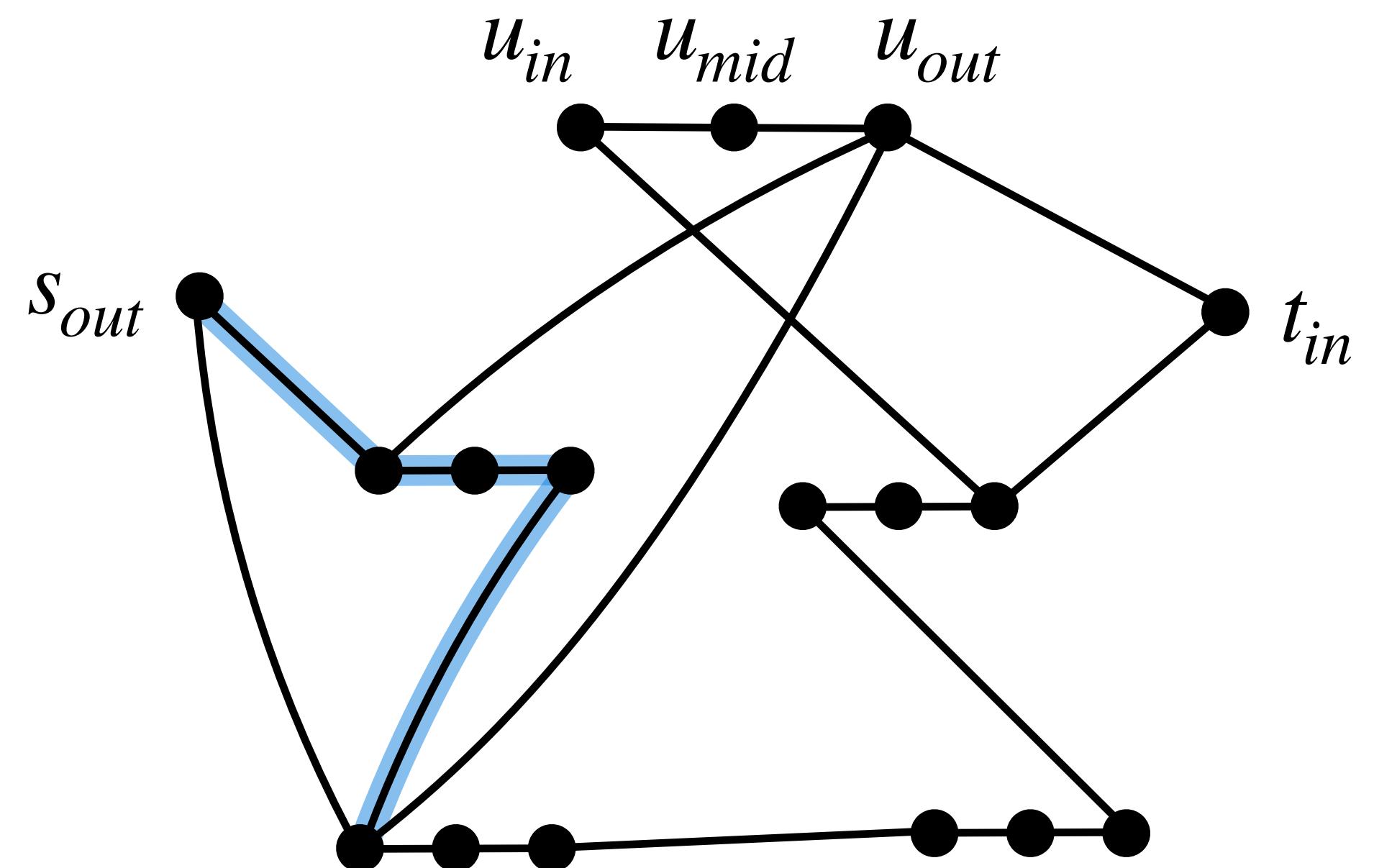
DirHamPath \leq_p *HamPath*

Correctness of reduction (\Leftarrow):



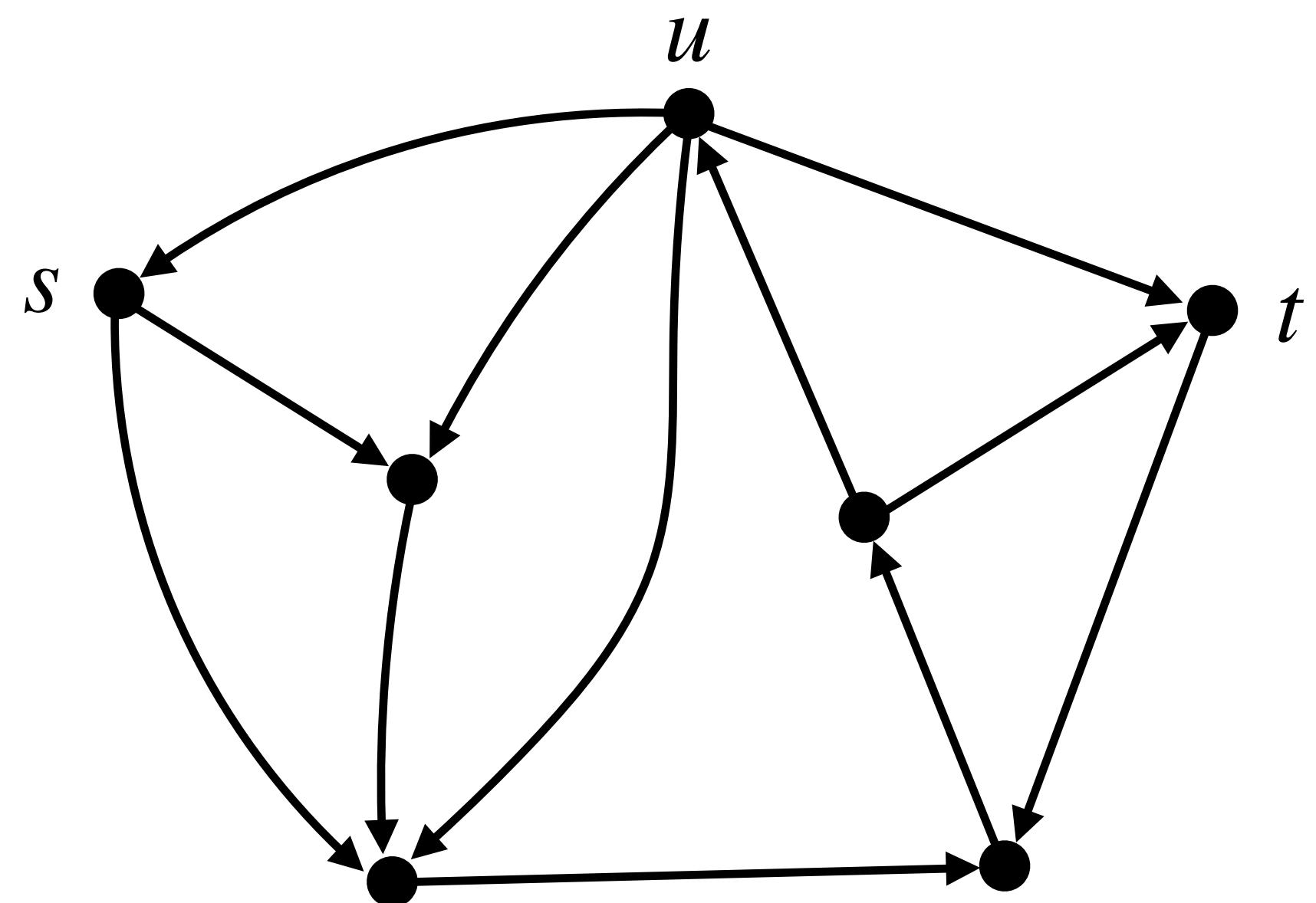
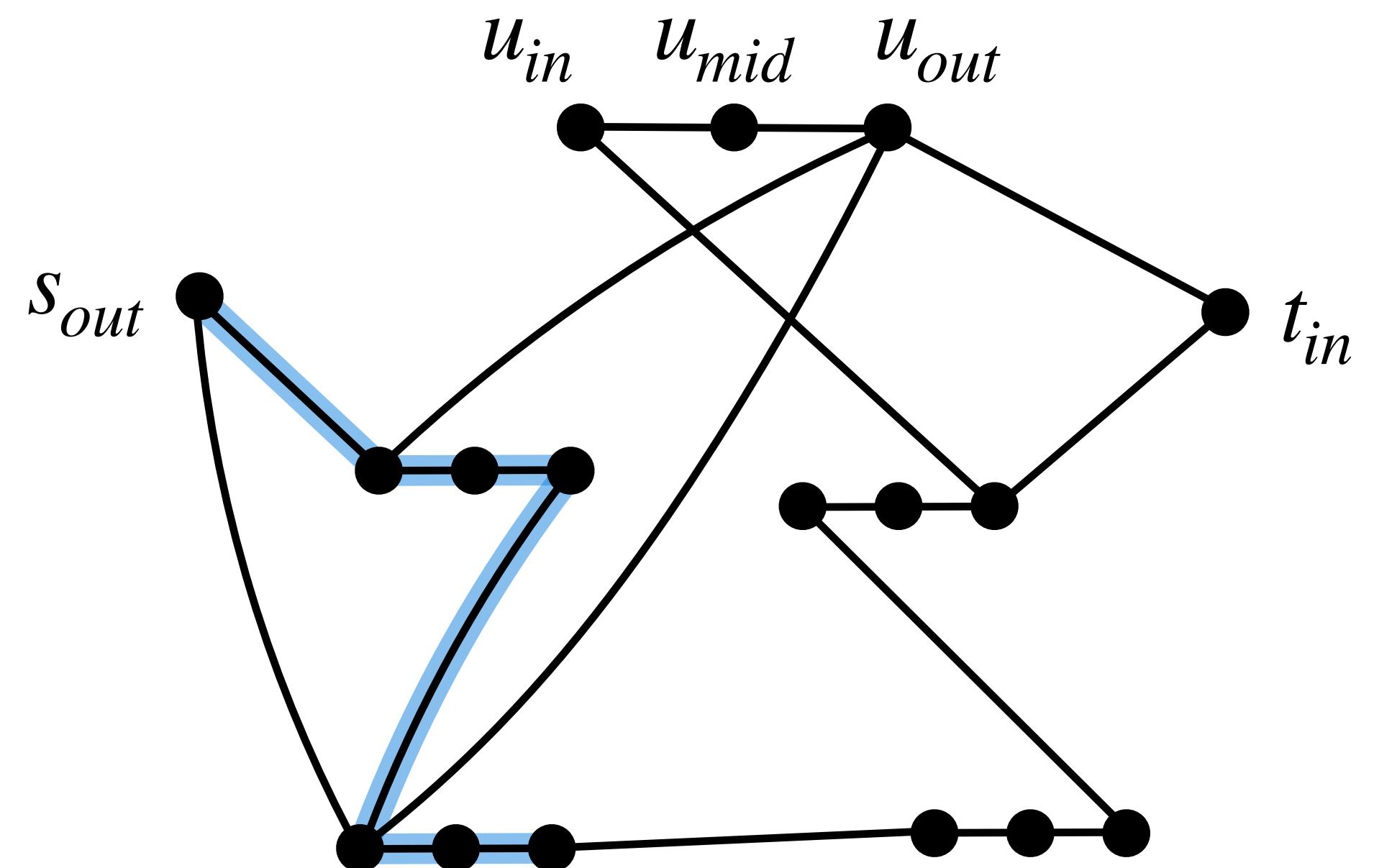
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



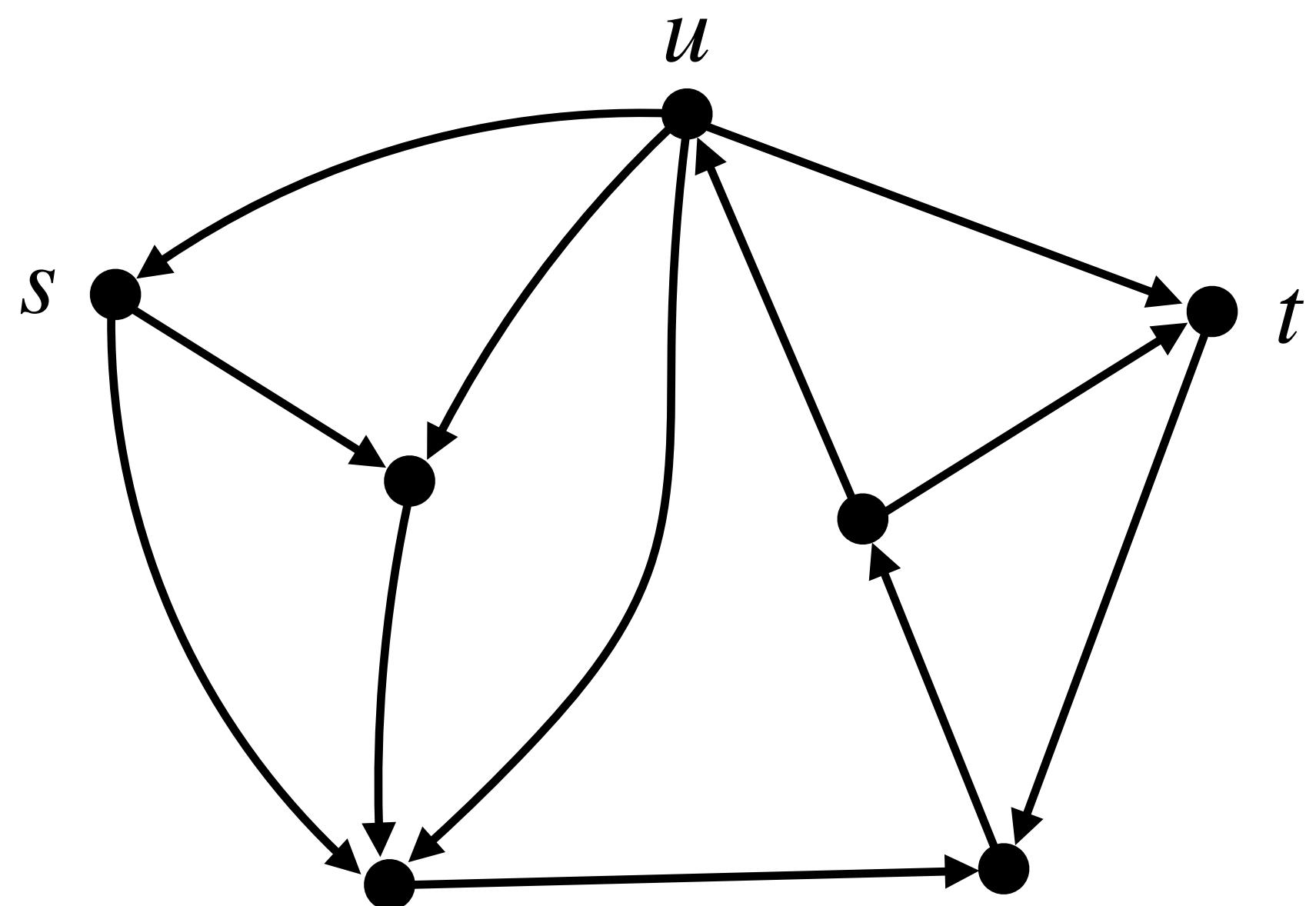
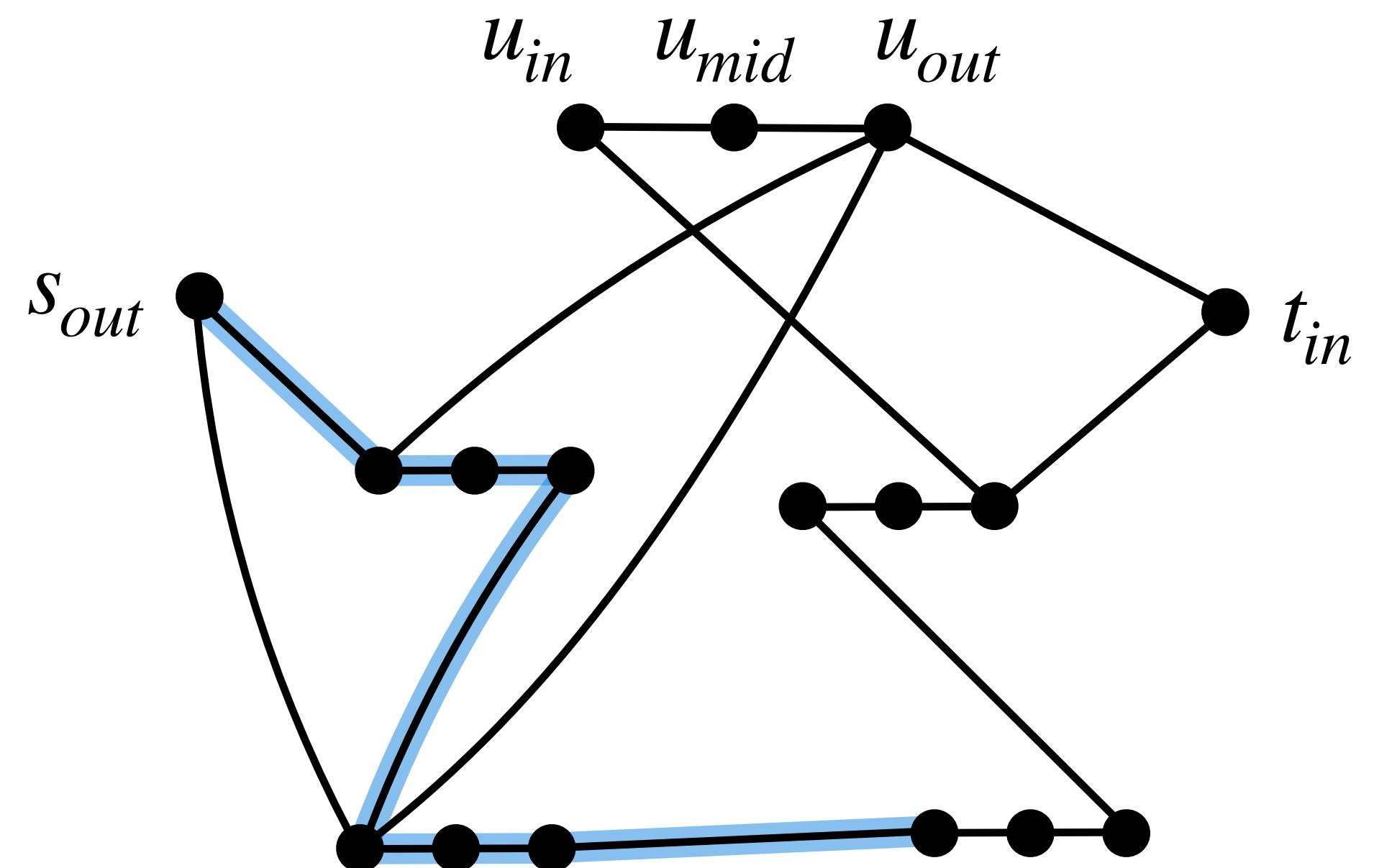
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



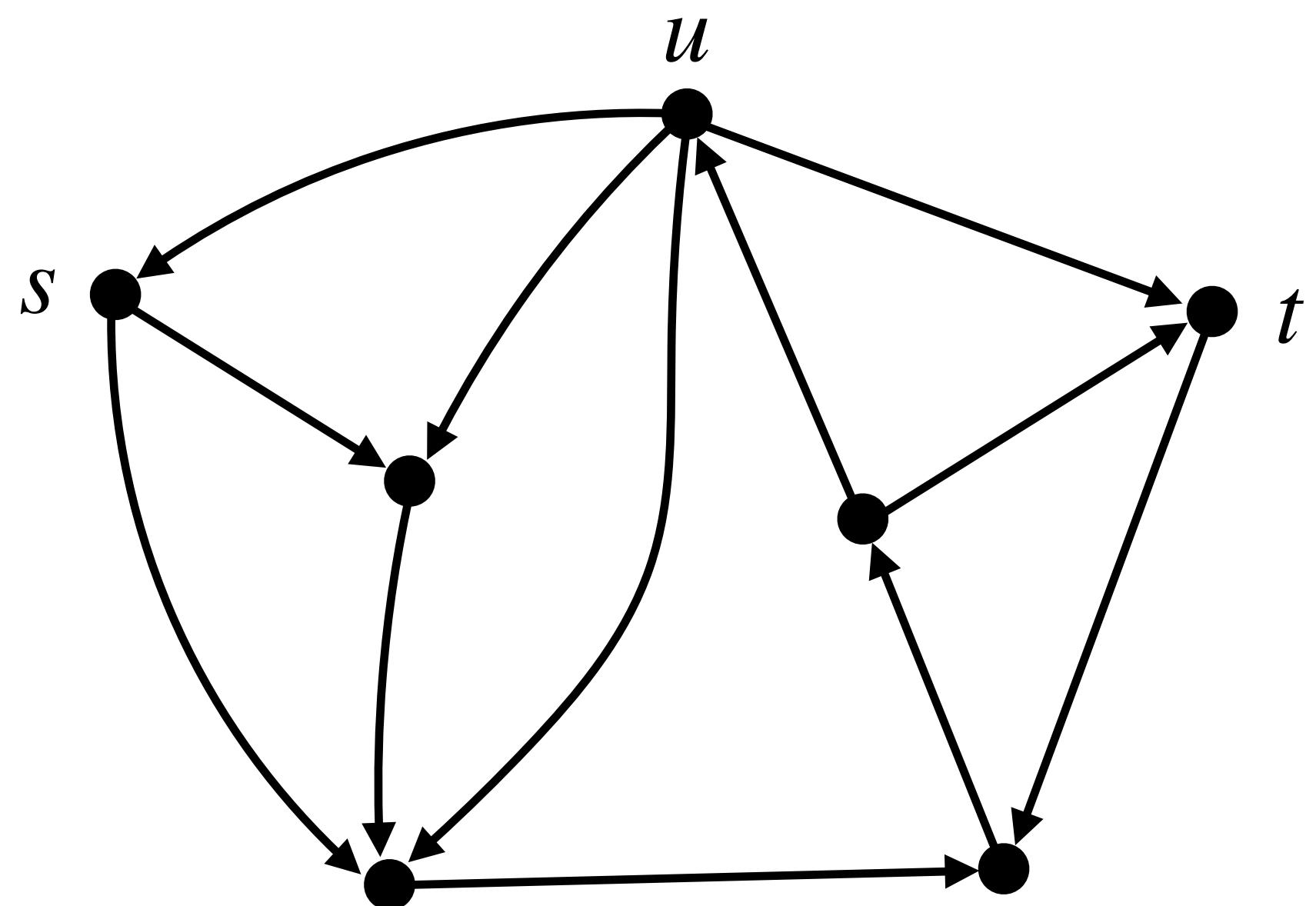
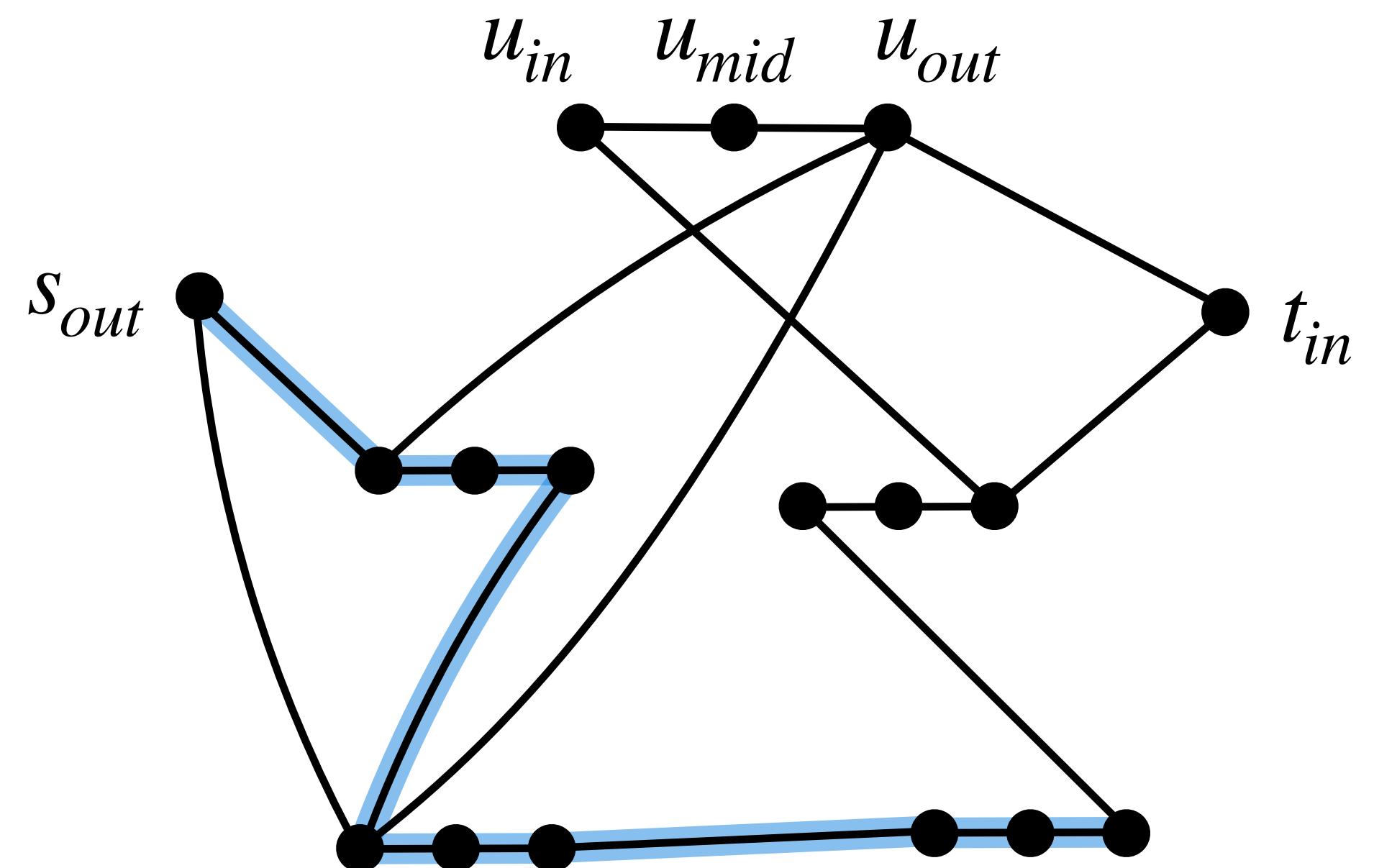
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



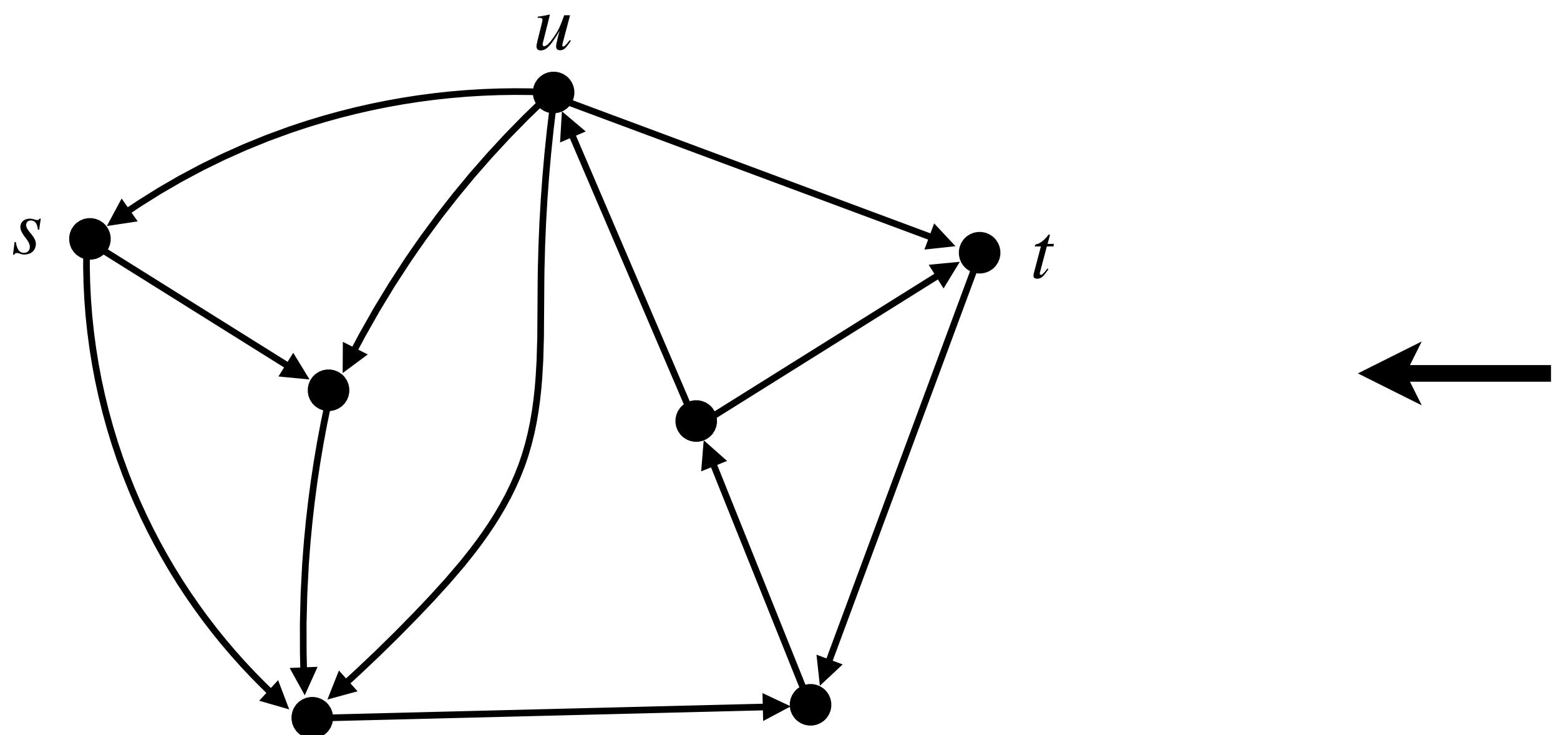
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



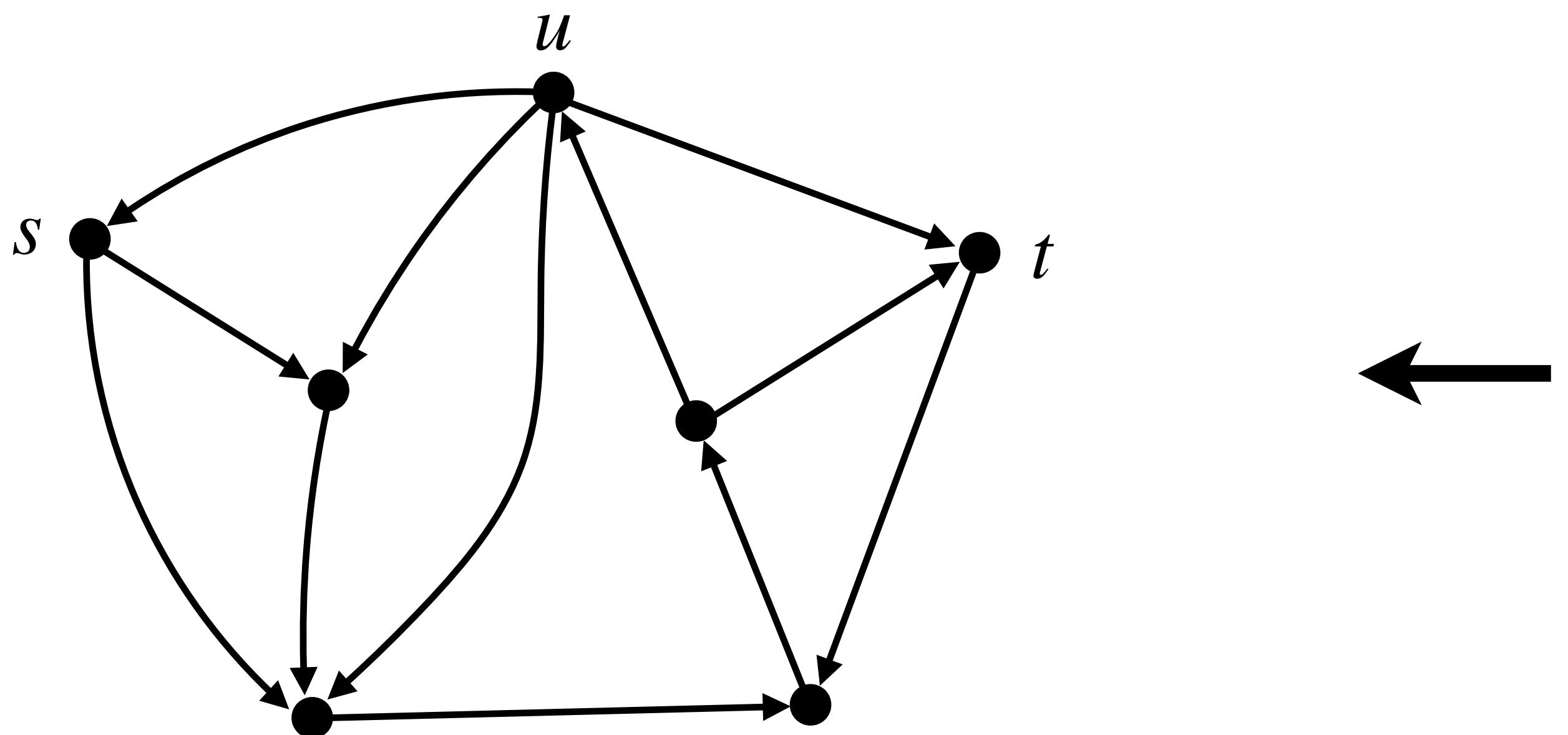
DirHampath \leq_p *Hampath*

Correctness of reduction (\Leftarrow):



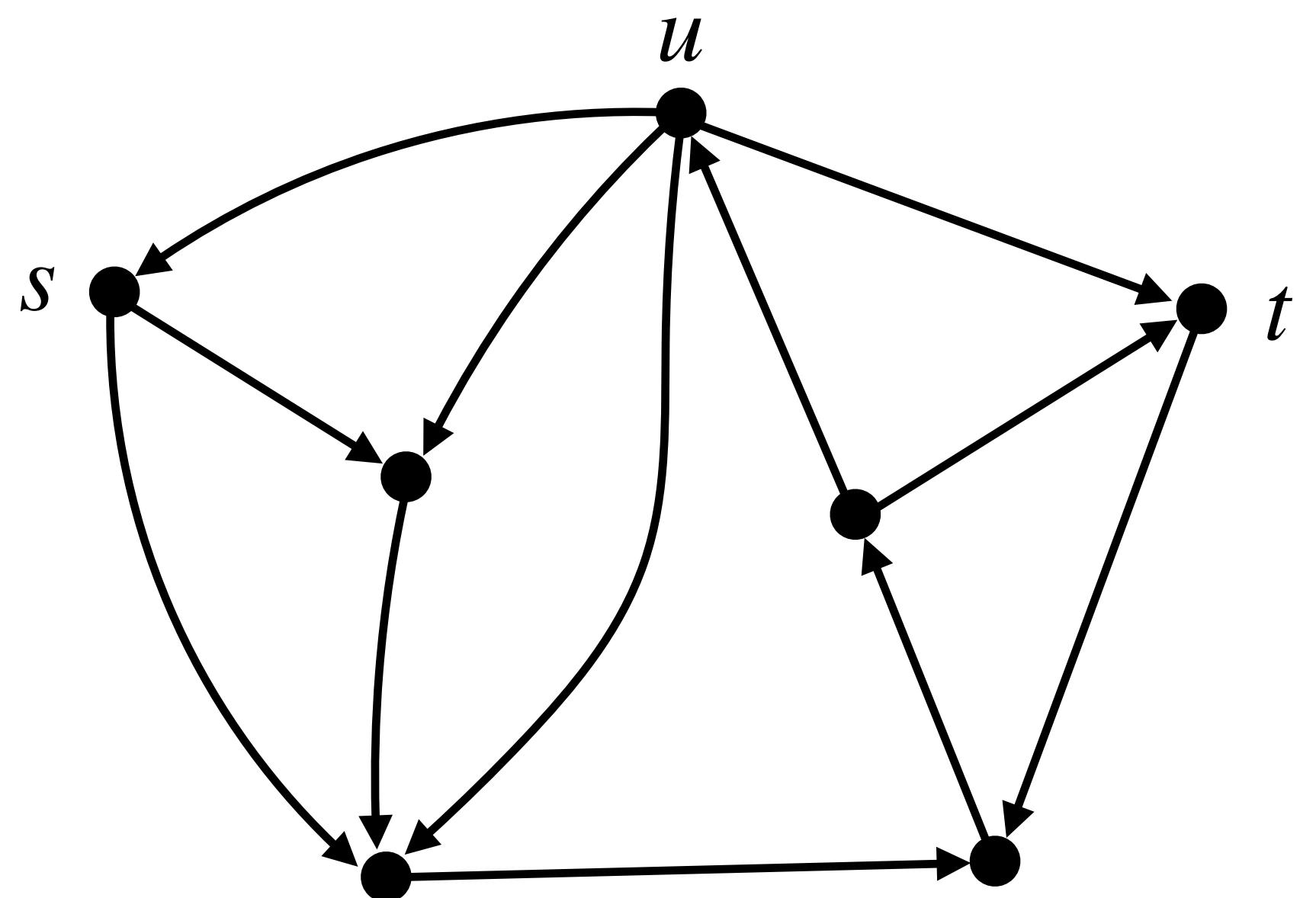
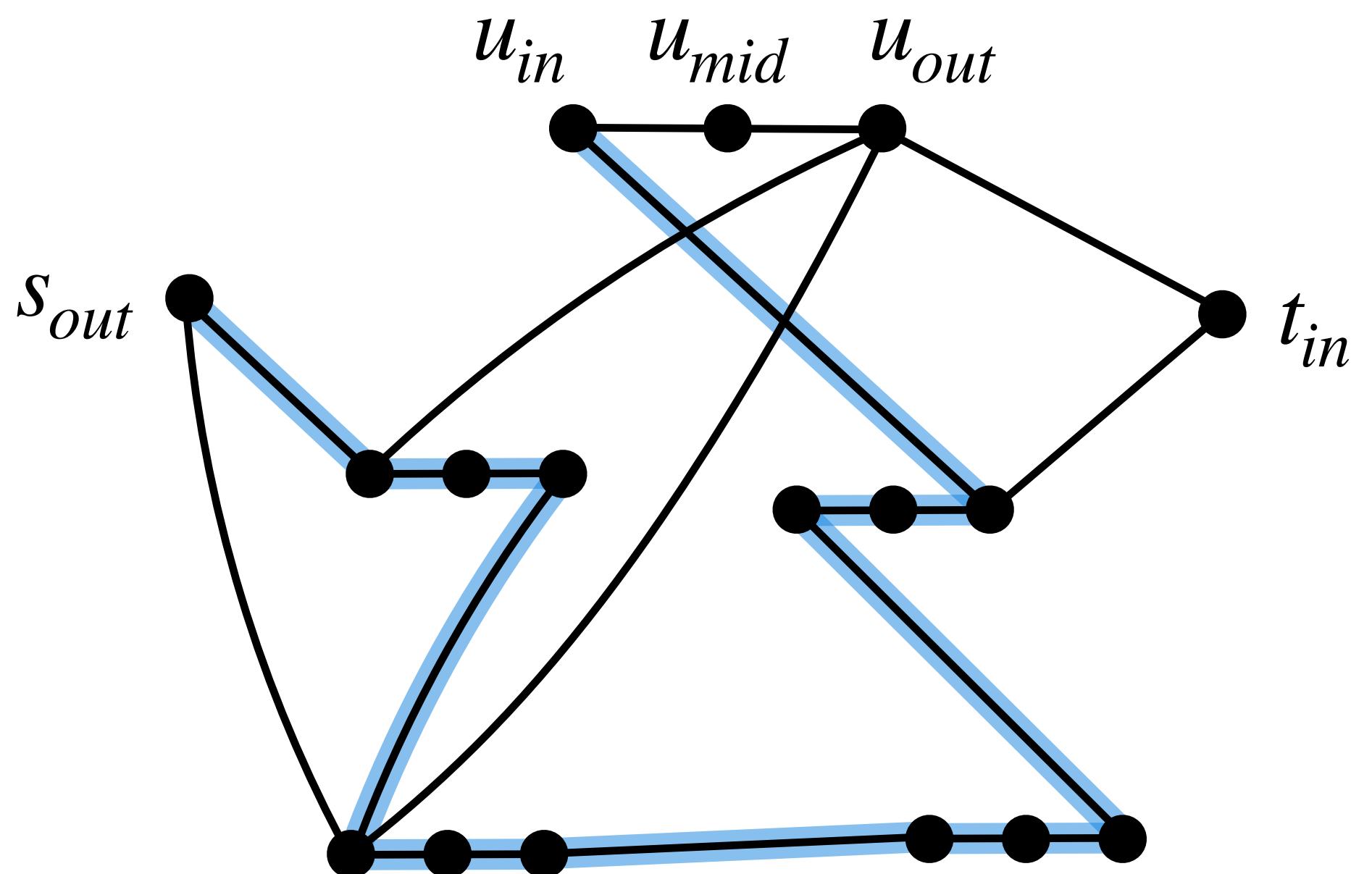
DirHampath \leq_p *Hampath*

Correctness of reduction (\Leftarrow):



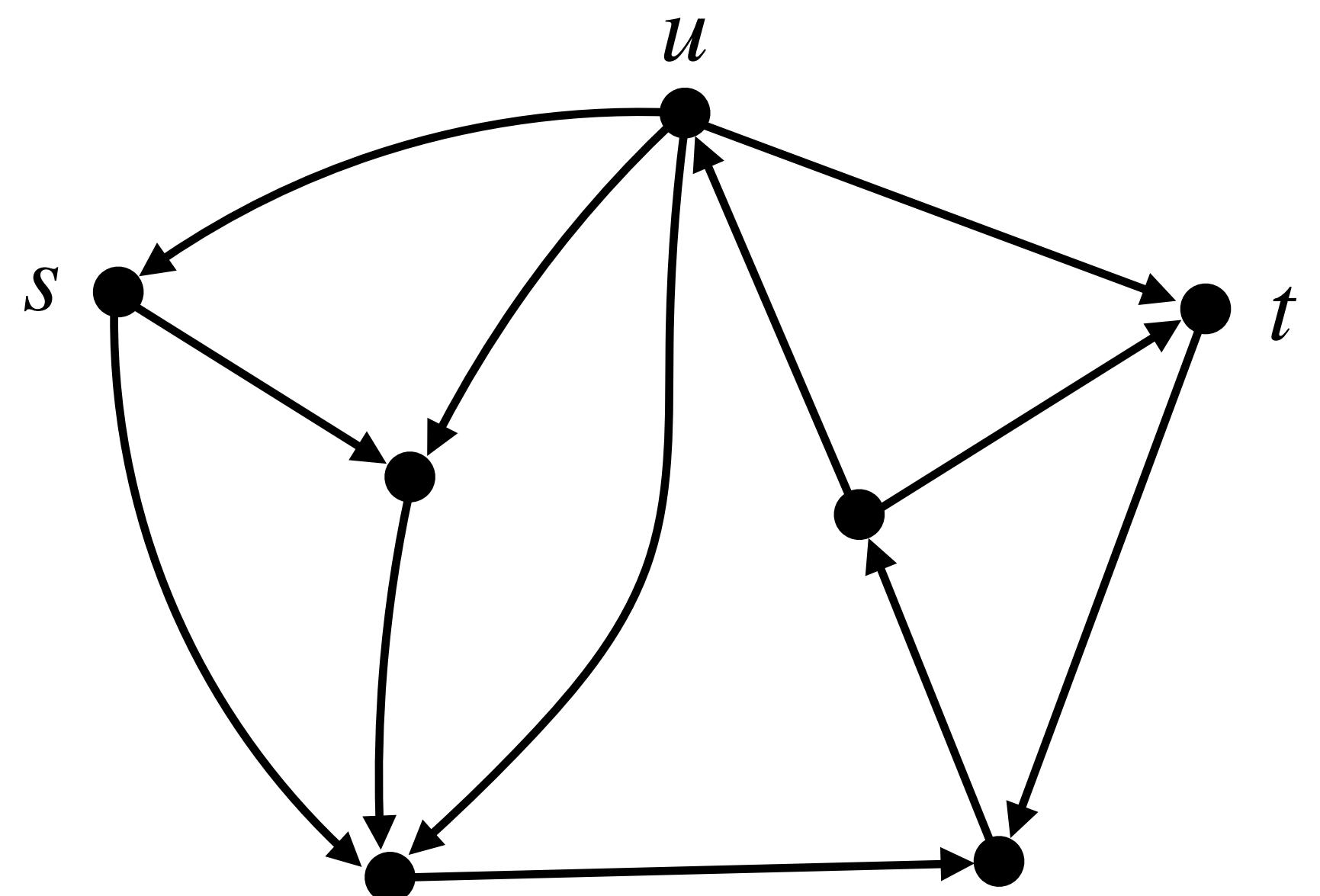
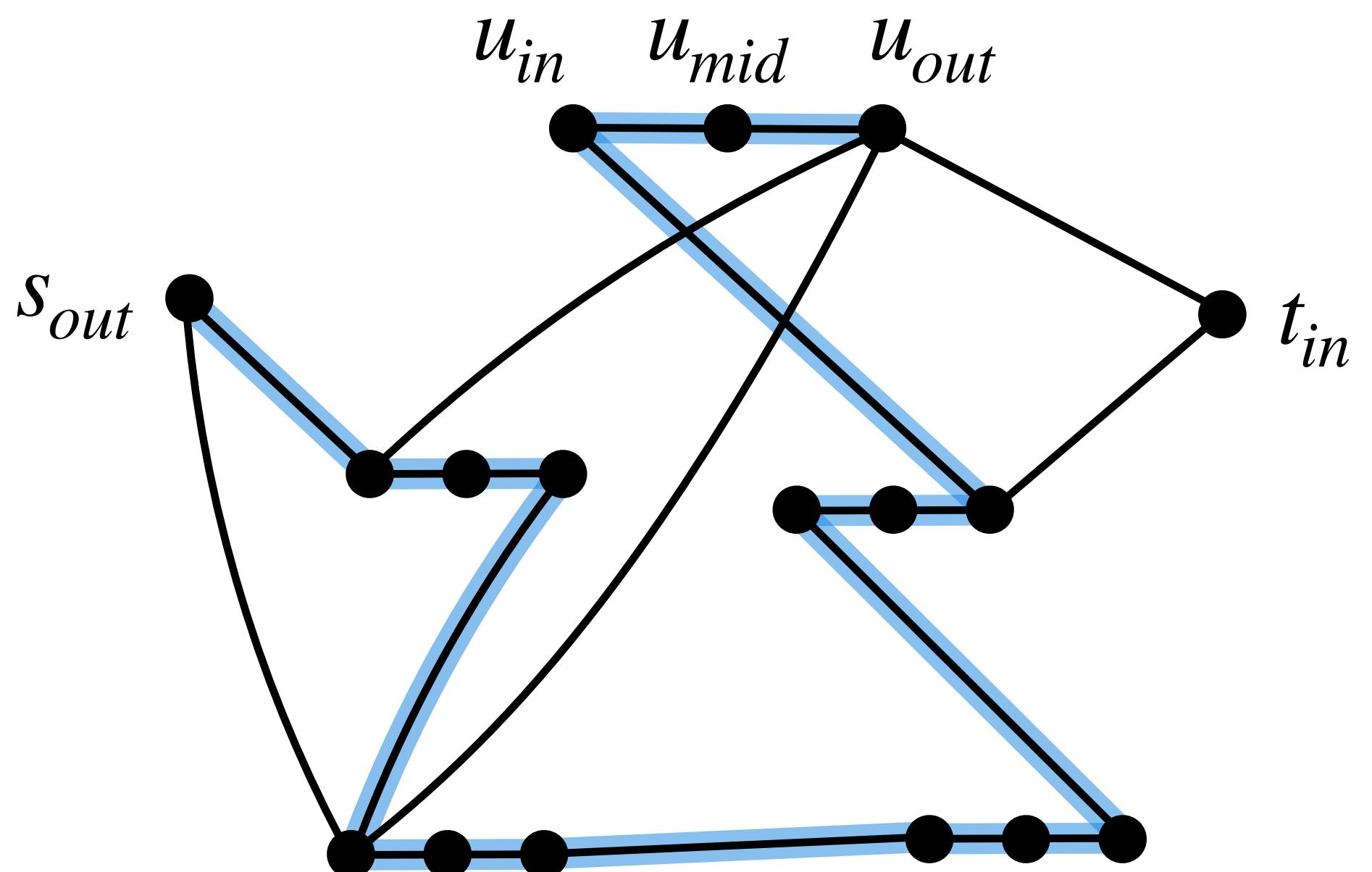
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



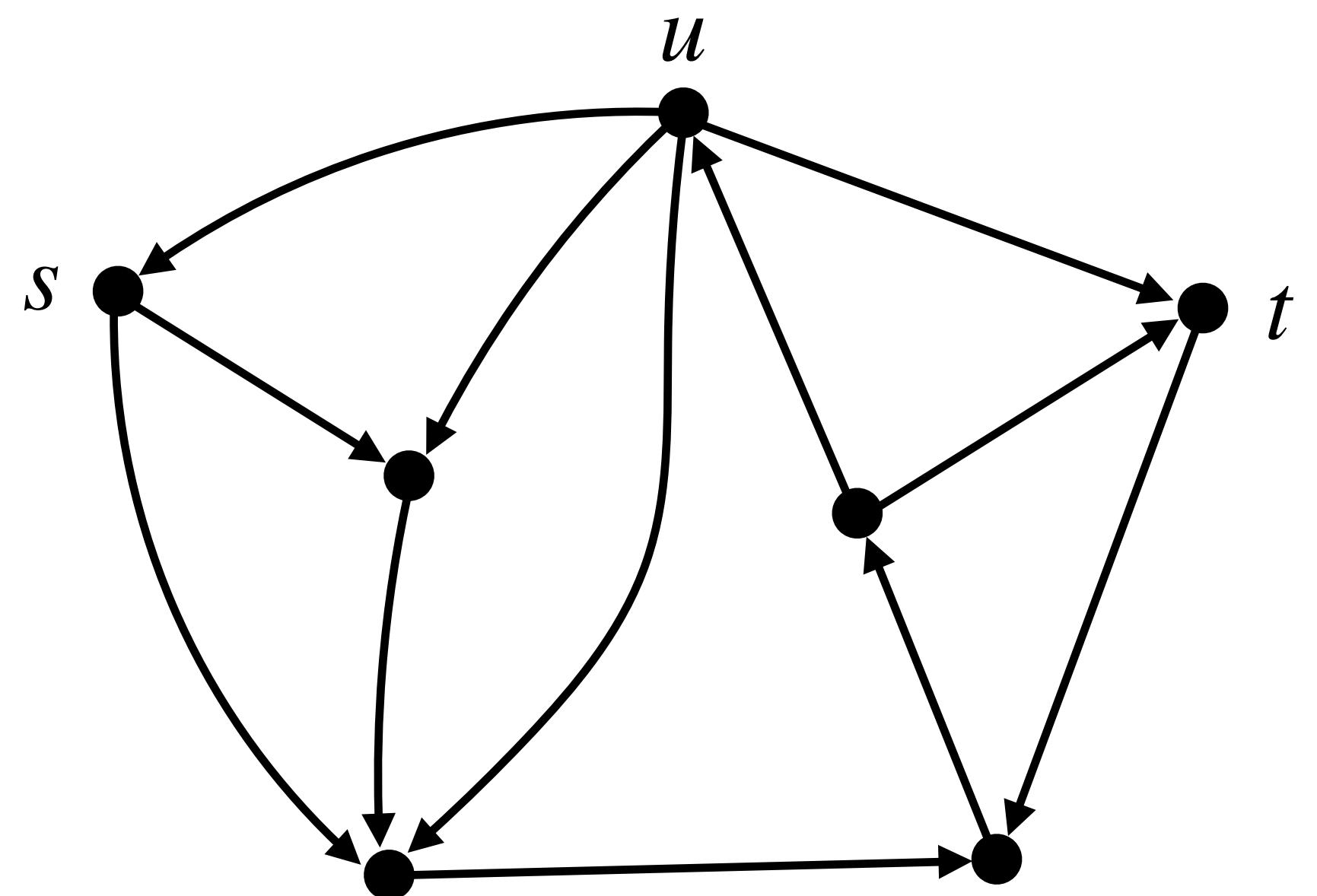
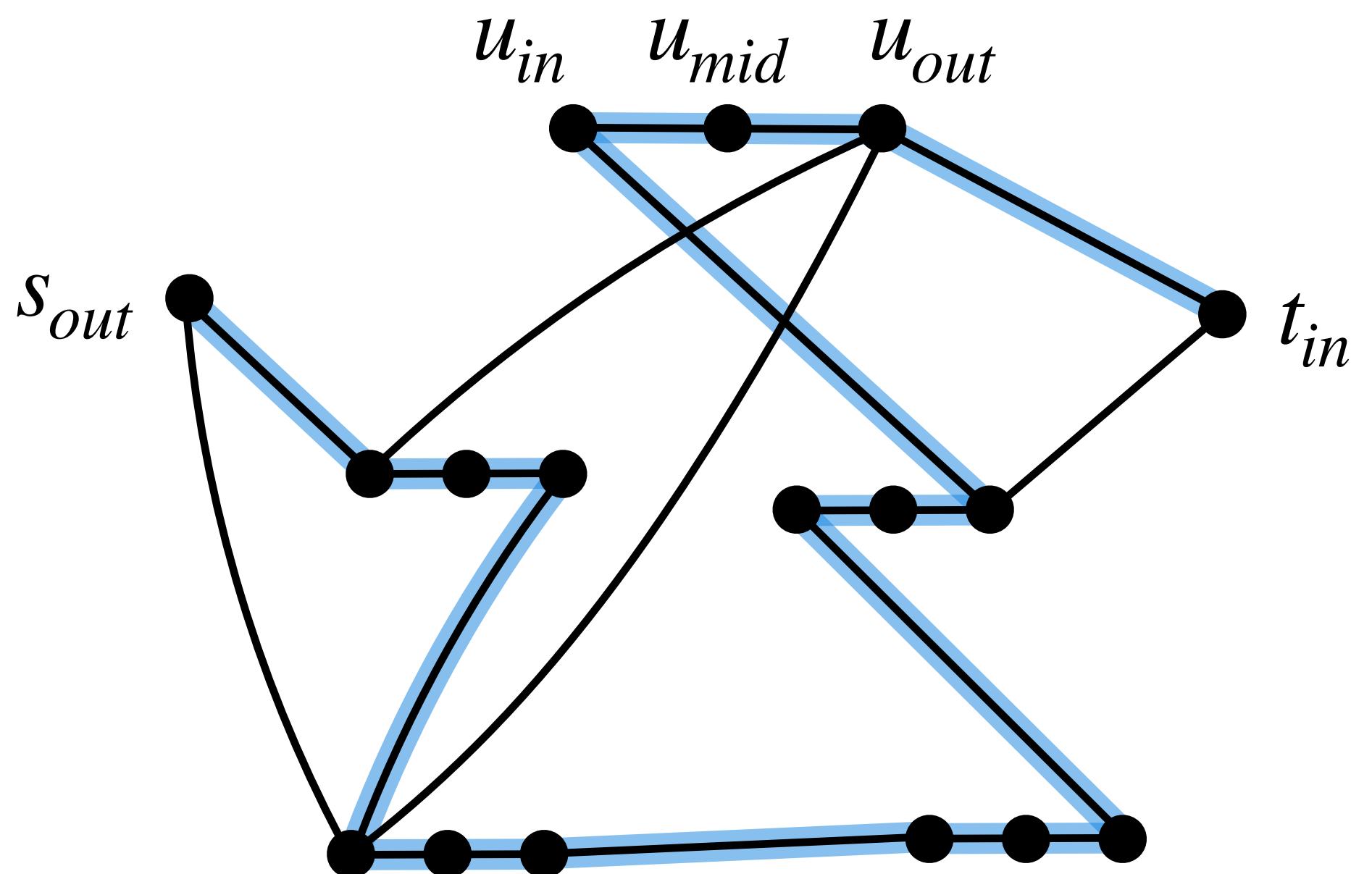
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



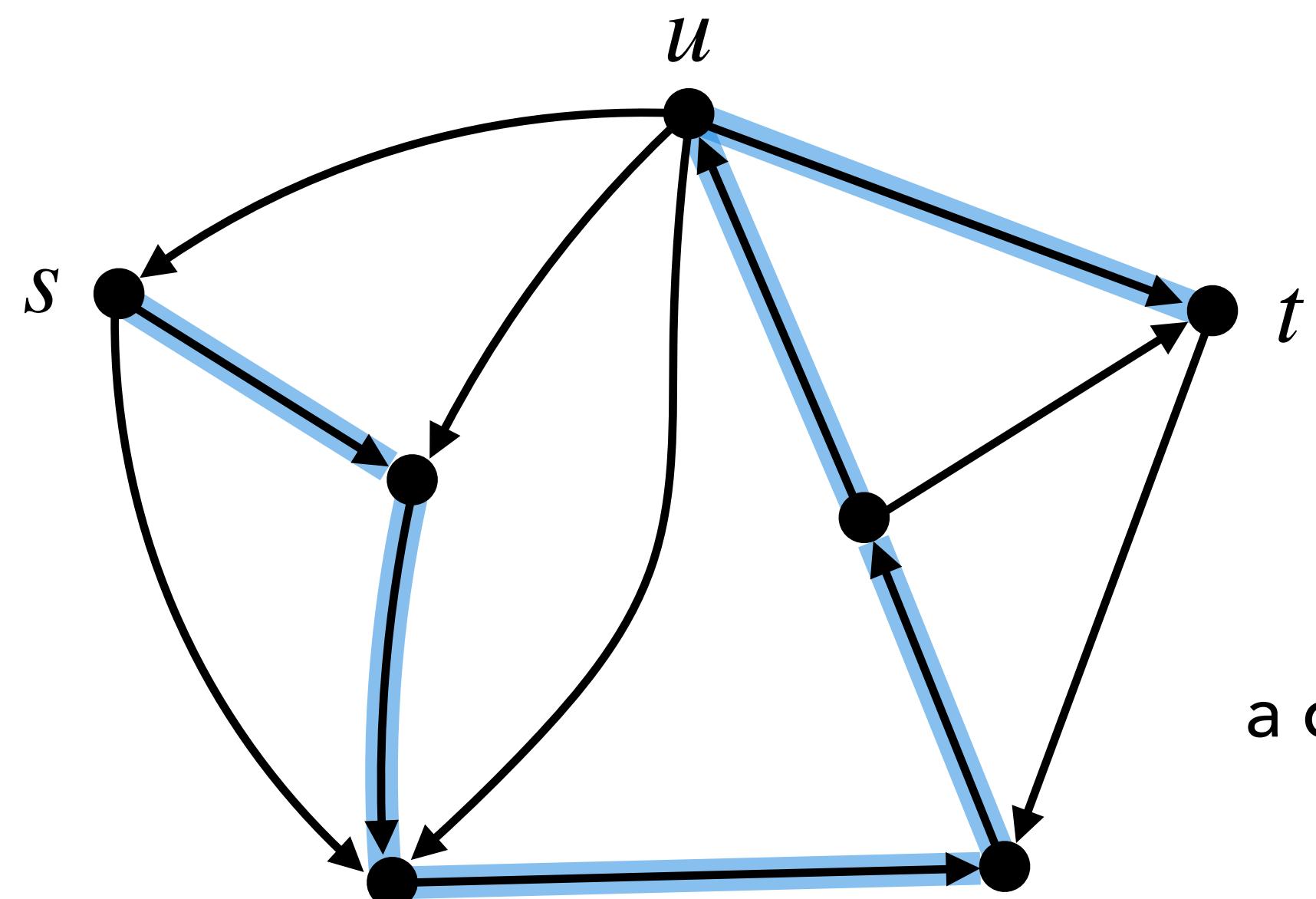
$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):

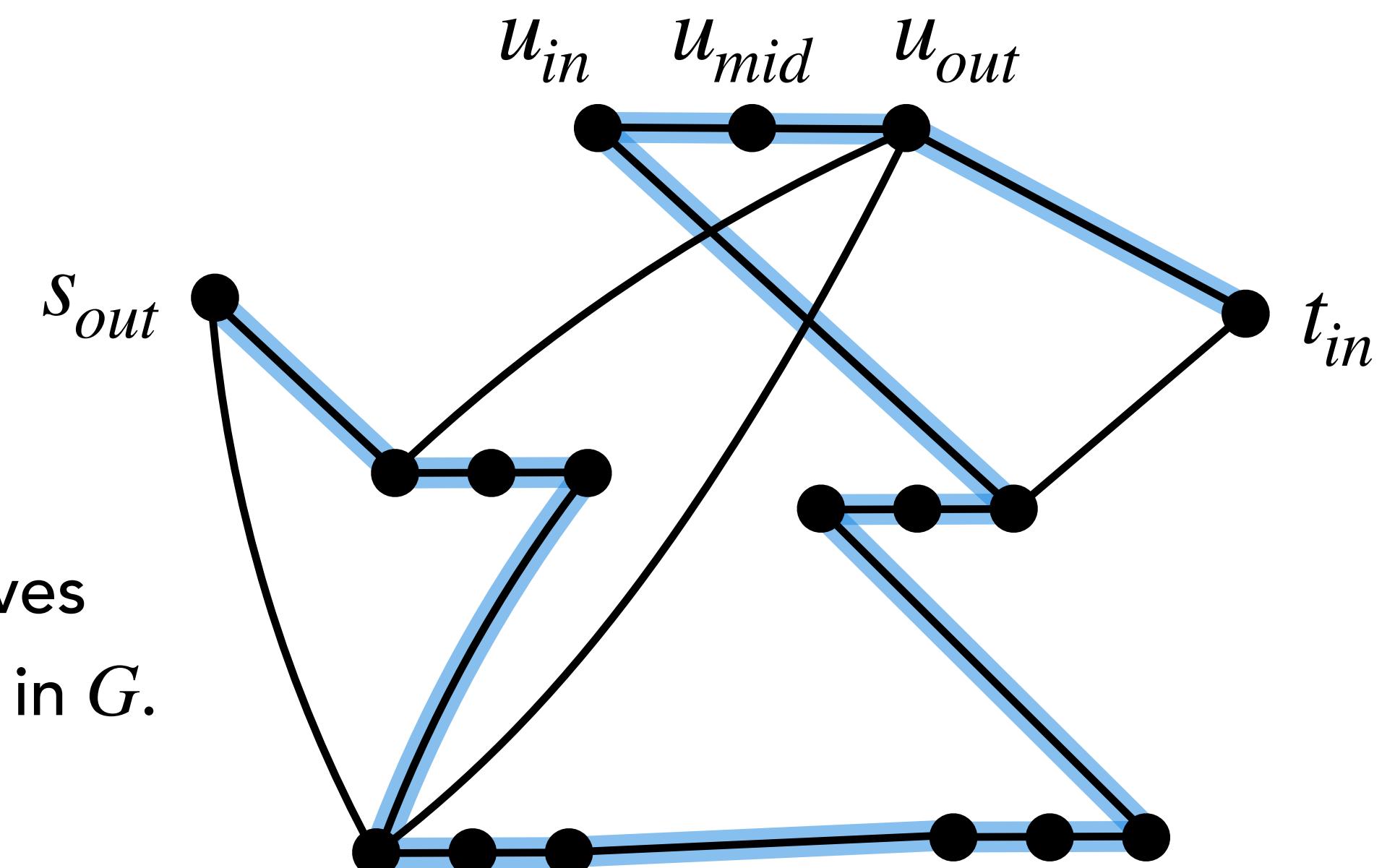


$\text{DirHampath} \leq_p \text{Hampath}$

Correctness of reduction (\Leftarrow):



Hamiltonian path in G' gives
a directed hamiltonian path in G .



$\text{DirHampath} \leq_p \text{Hampath}$

$\langle G, s, t \rangle \rightarrow \langle G', s', t' \rangle$:

- Vertices of G' :
 - For s have s_{out} , t have t_{in} .
 - For any other vertex u have a 3 vertices u_{in}, u_{mid}, u_{out} .
- Edges of G' :
 - Ignore the incoming edges to s and outgoing edges from t .
 - For every edge (u, v) have an edge $\{u_{out}, v_{in}\}$.
 - Edges $\{u_{in}, u_{mid}\}$ and $\{u_{mid}, u_{out}\}$.
- $s' = s_{out}$, $t' = t_{in}$.

Prove the correctness
formally yourself.

Hampath \leq_p *Hamcycle*

$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\text{Hampath} \leq_p \text{Hamcycle}$

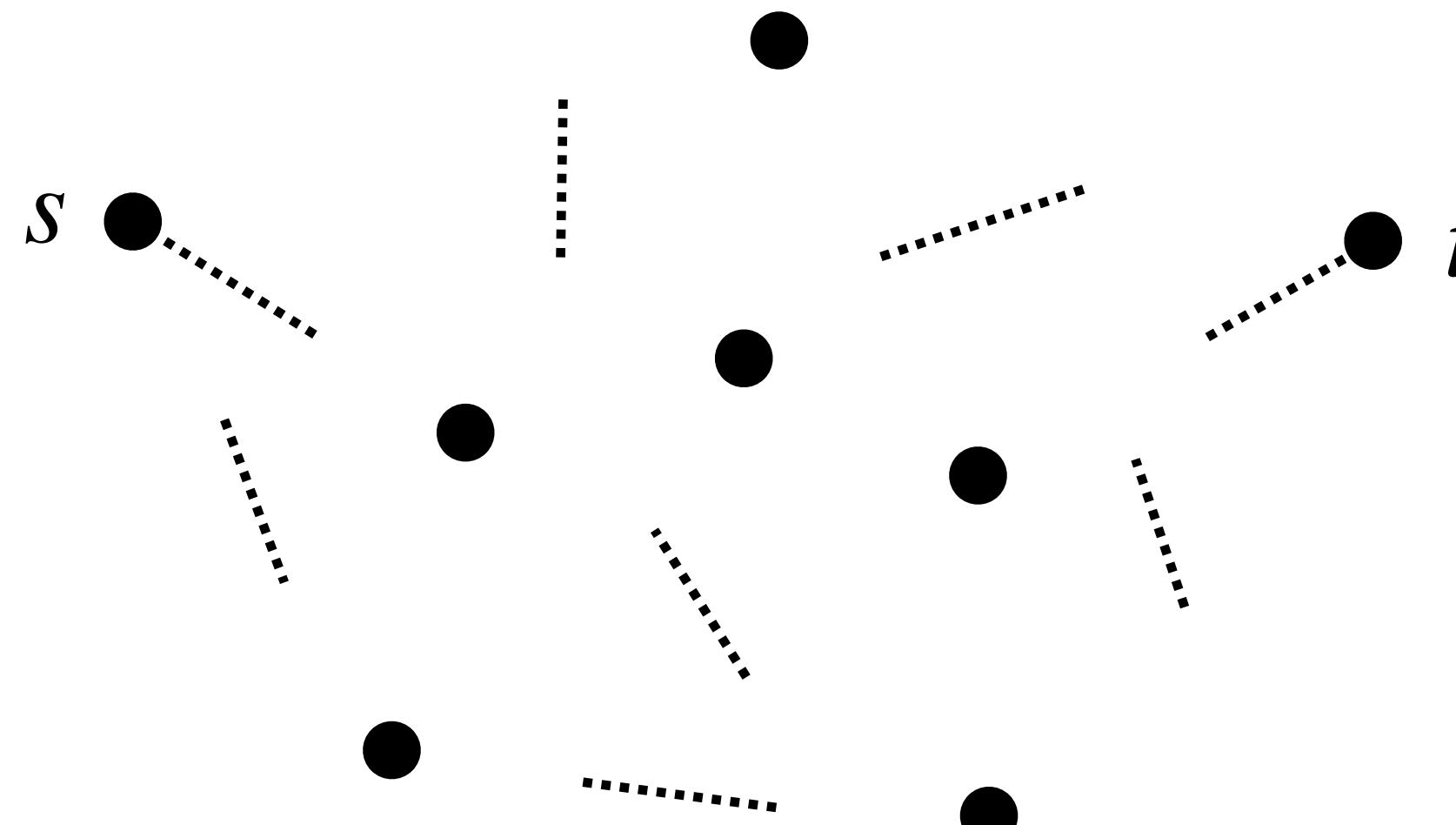
- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:

$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

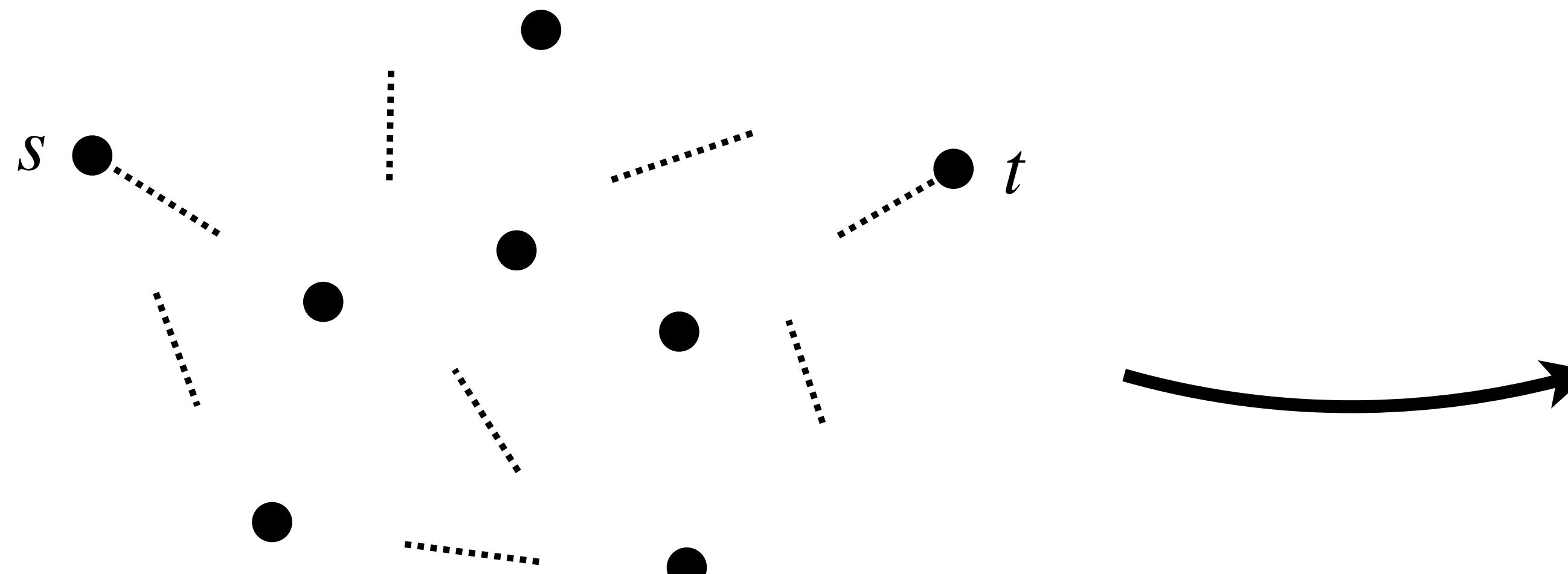
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

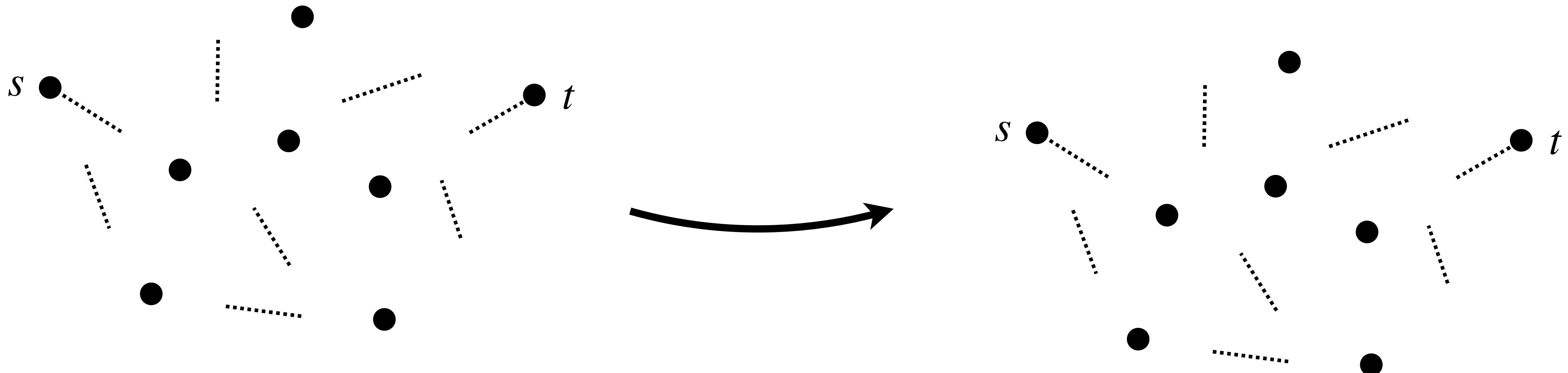
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

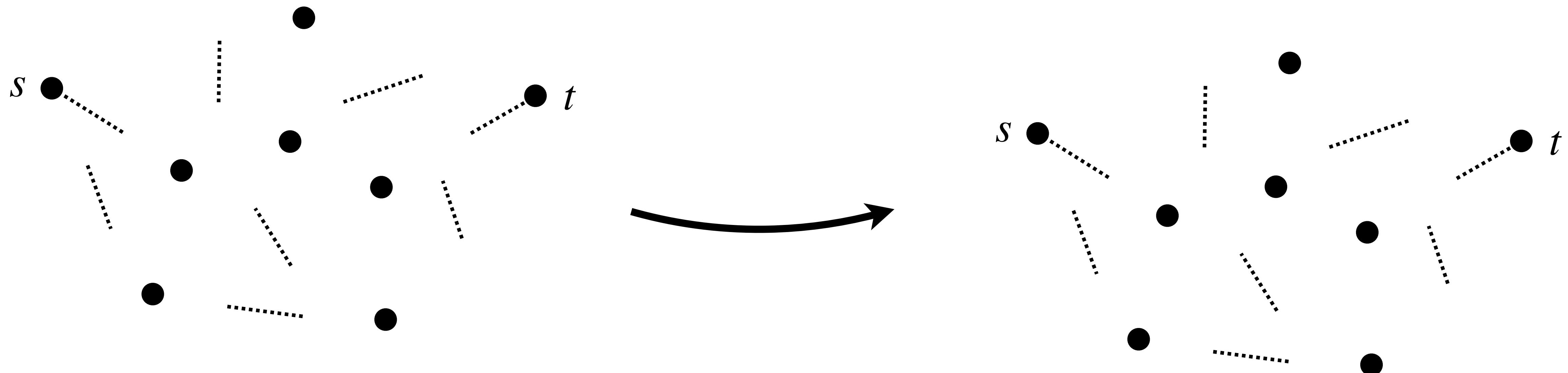
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

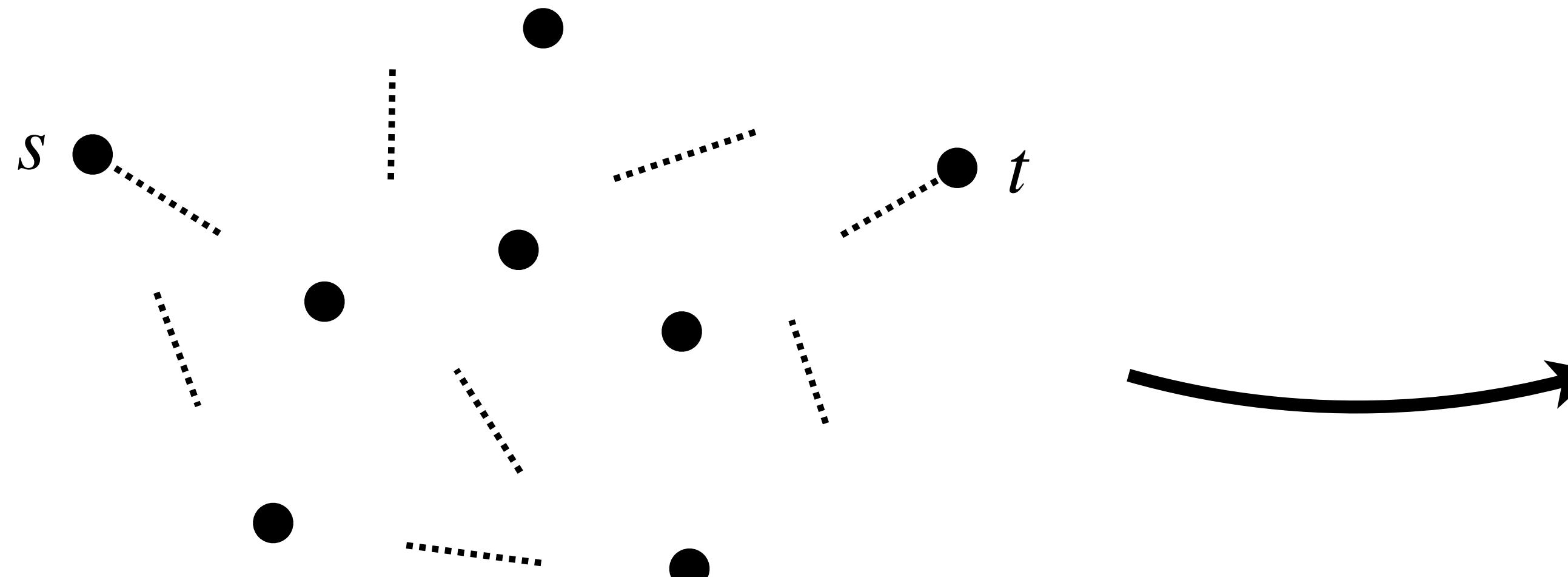
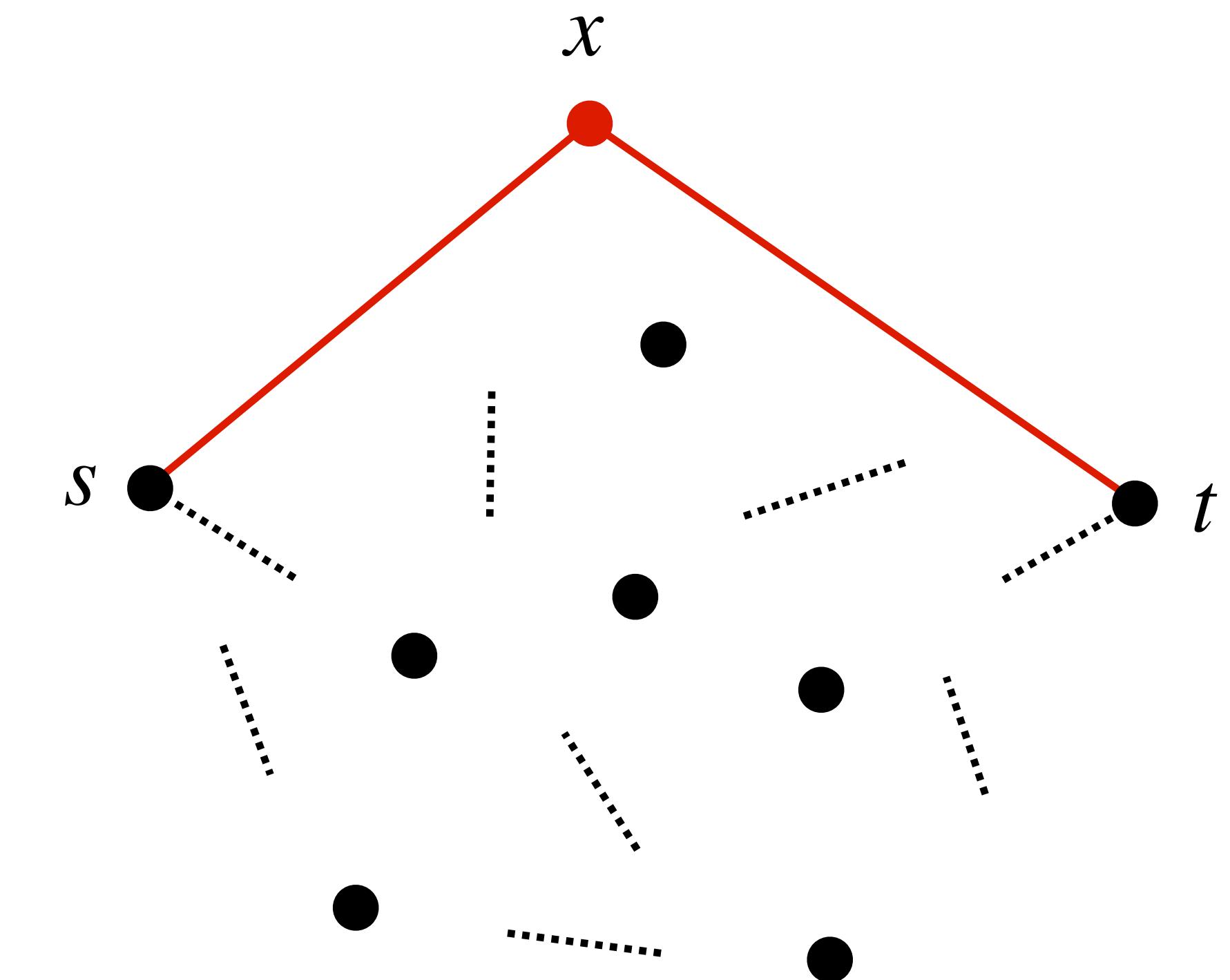
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

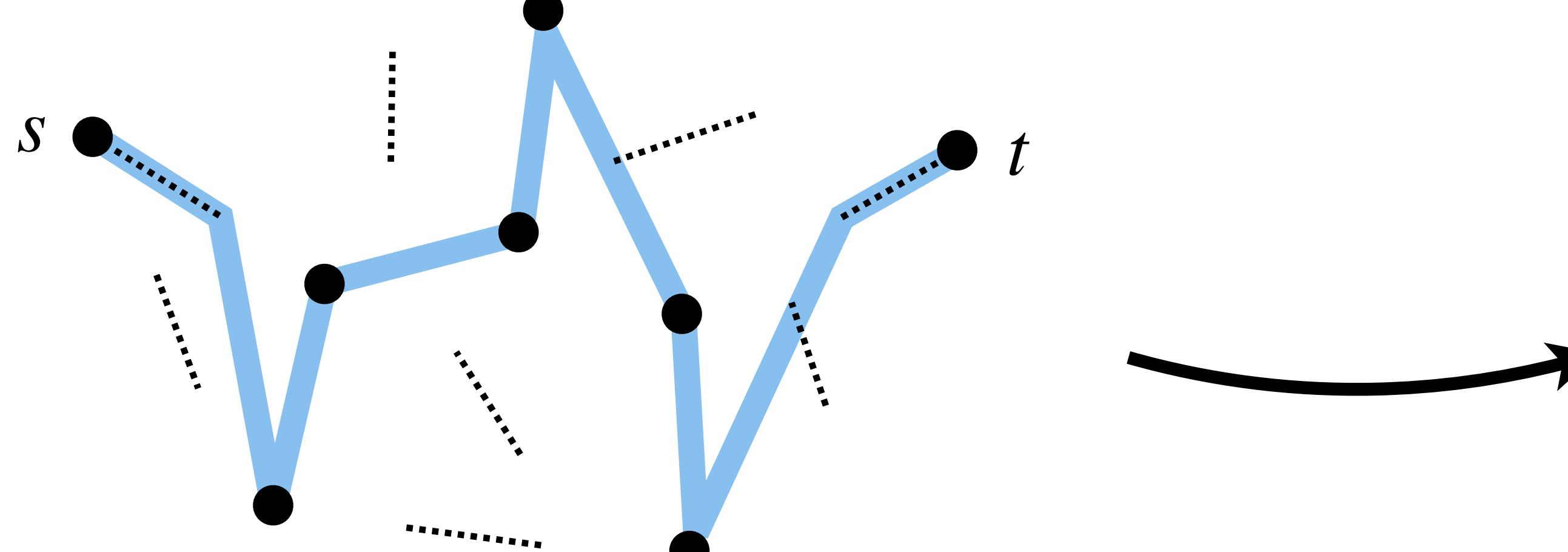
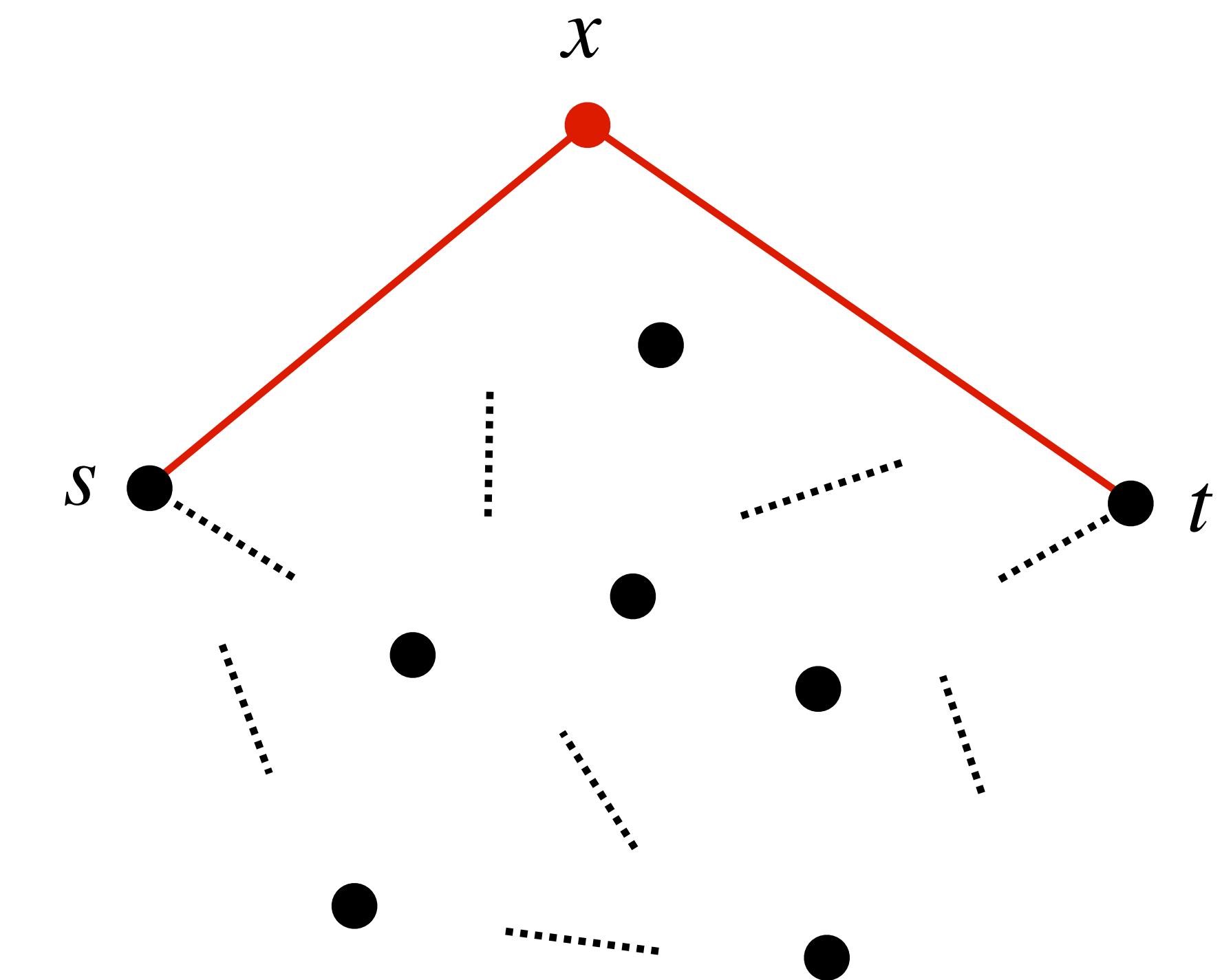
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

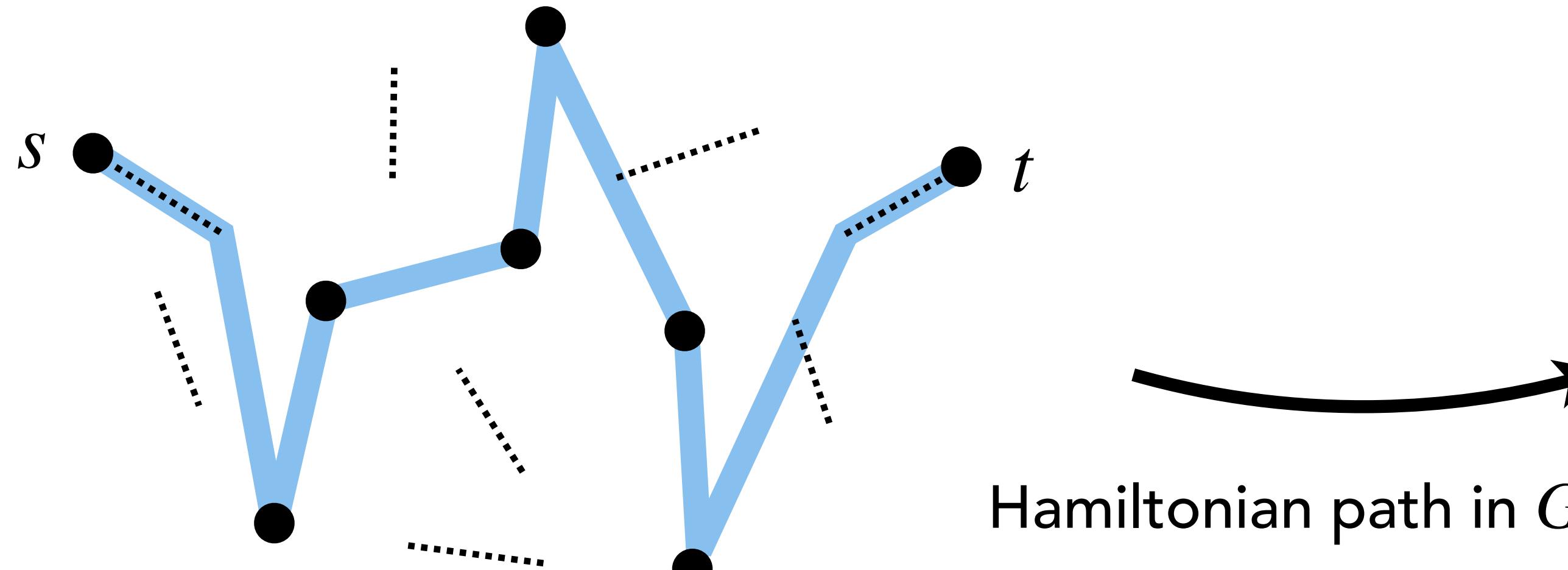
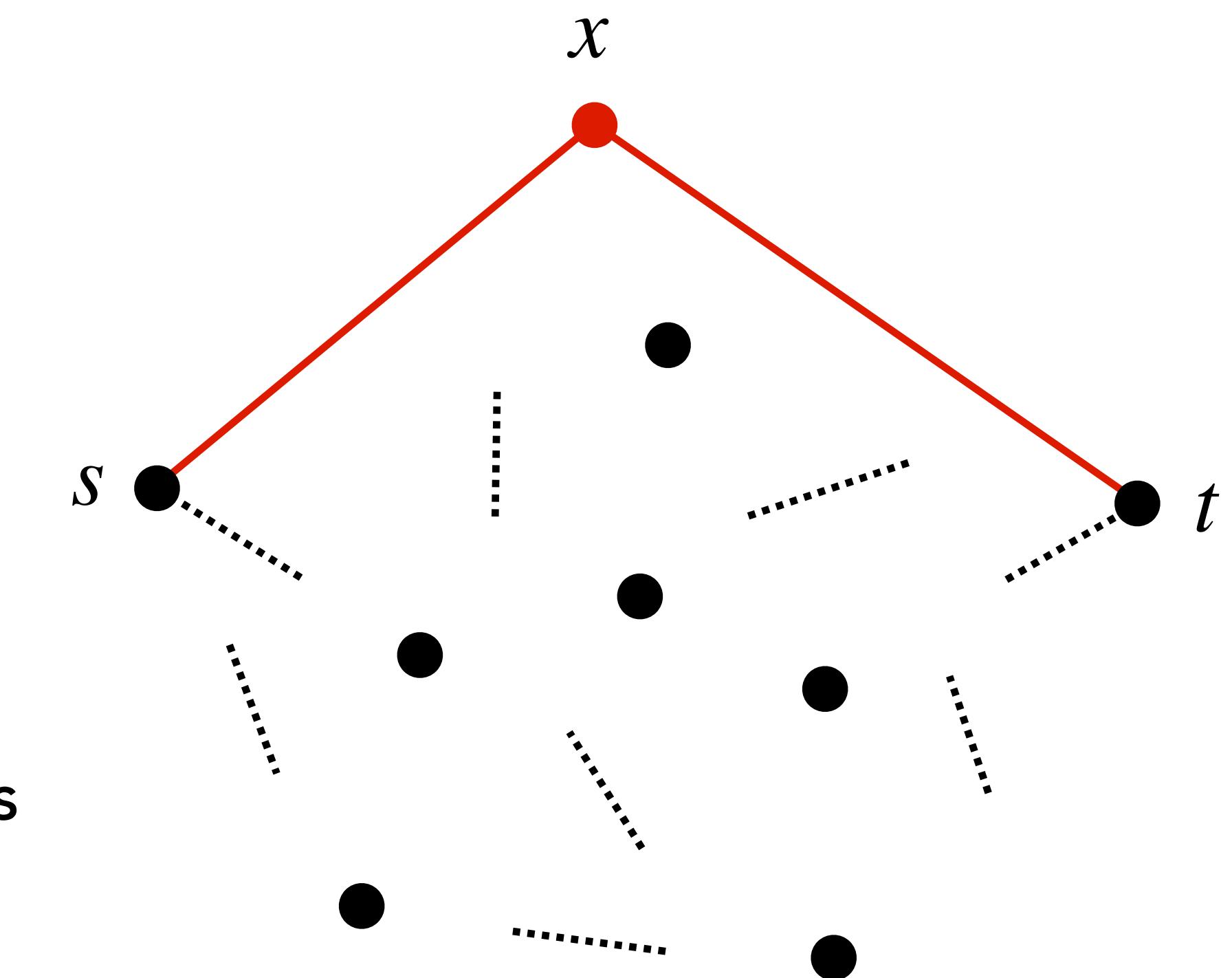
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

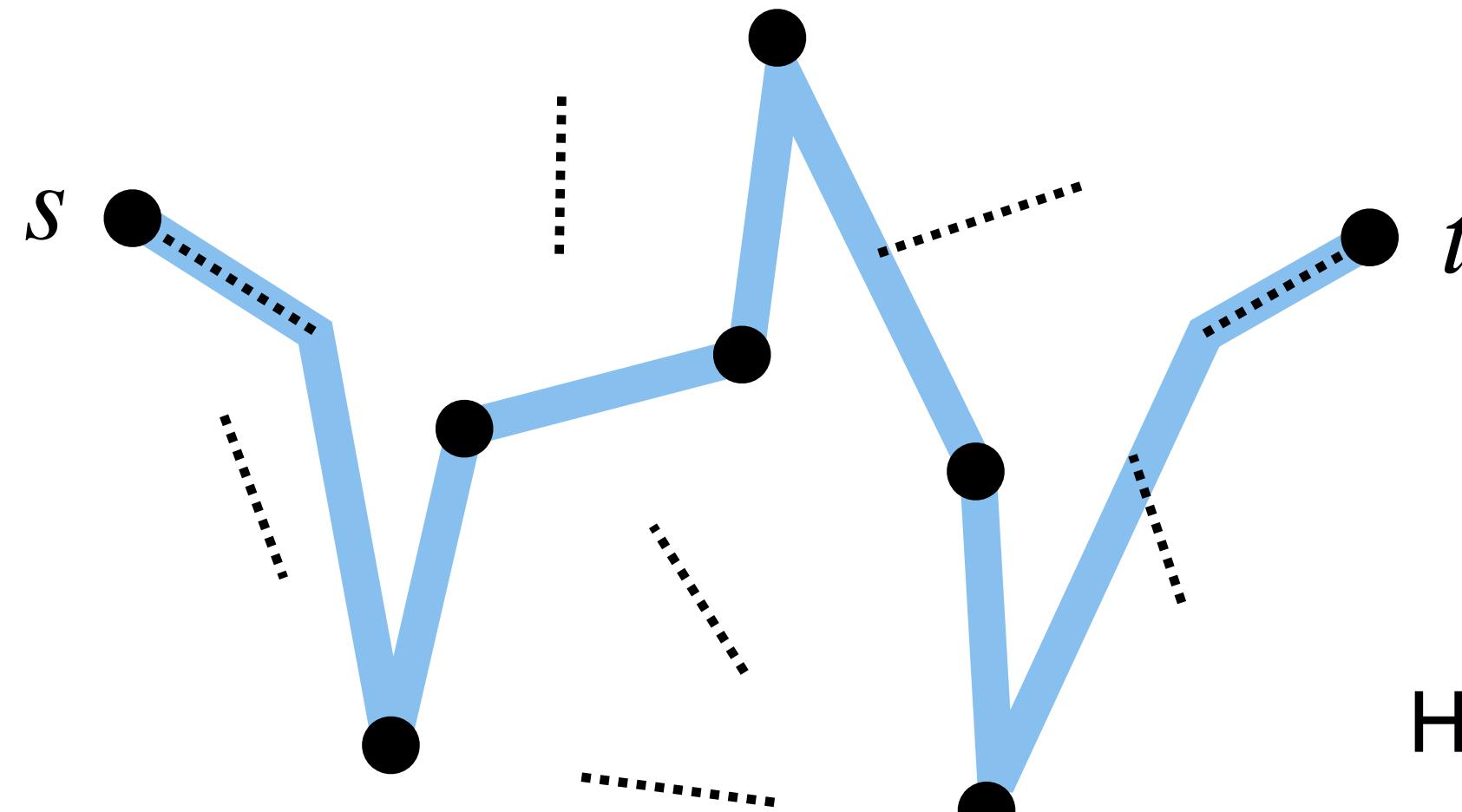
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



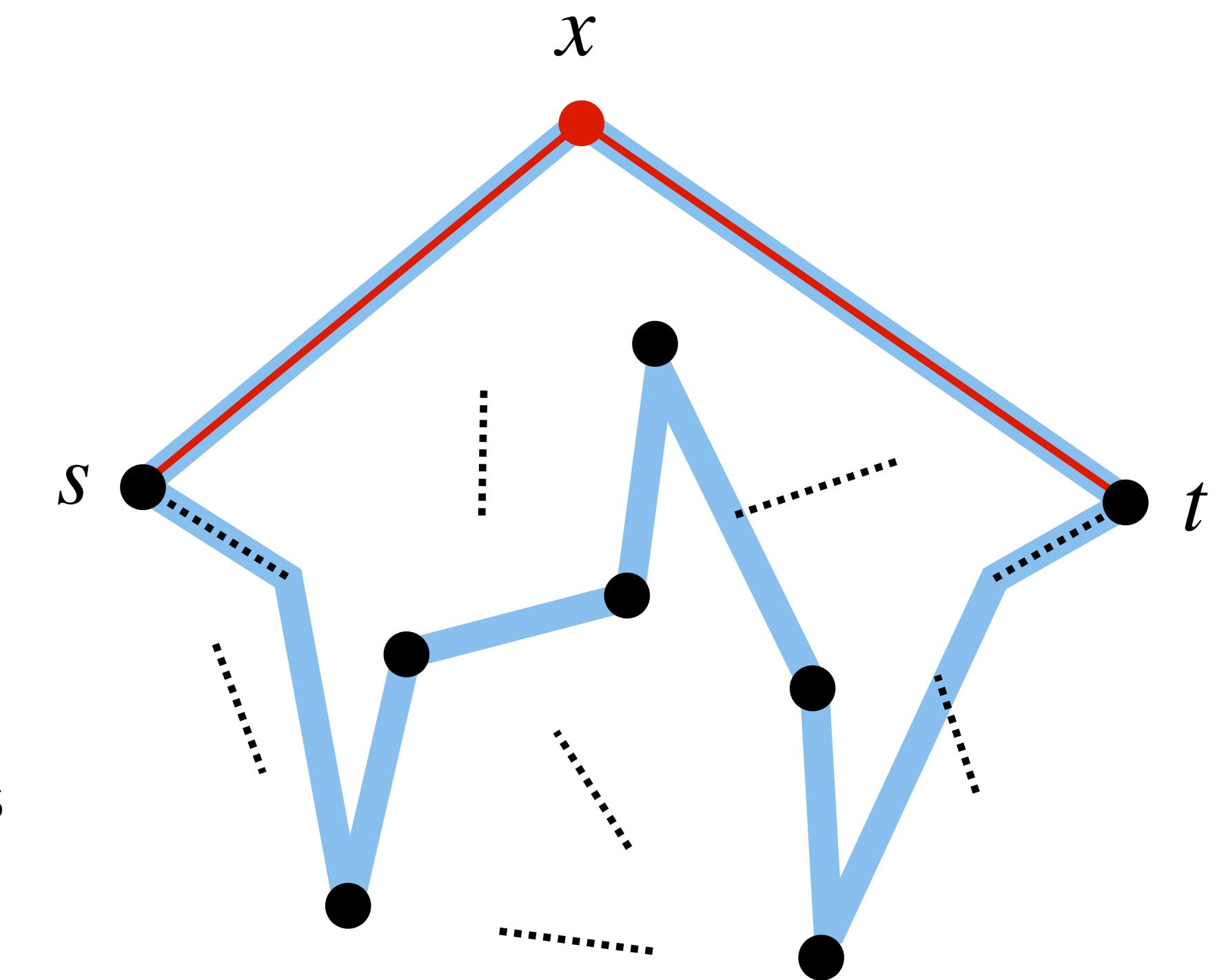
$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



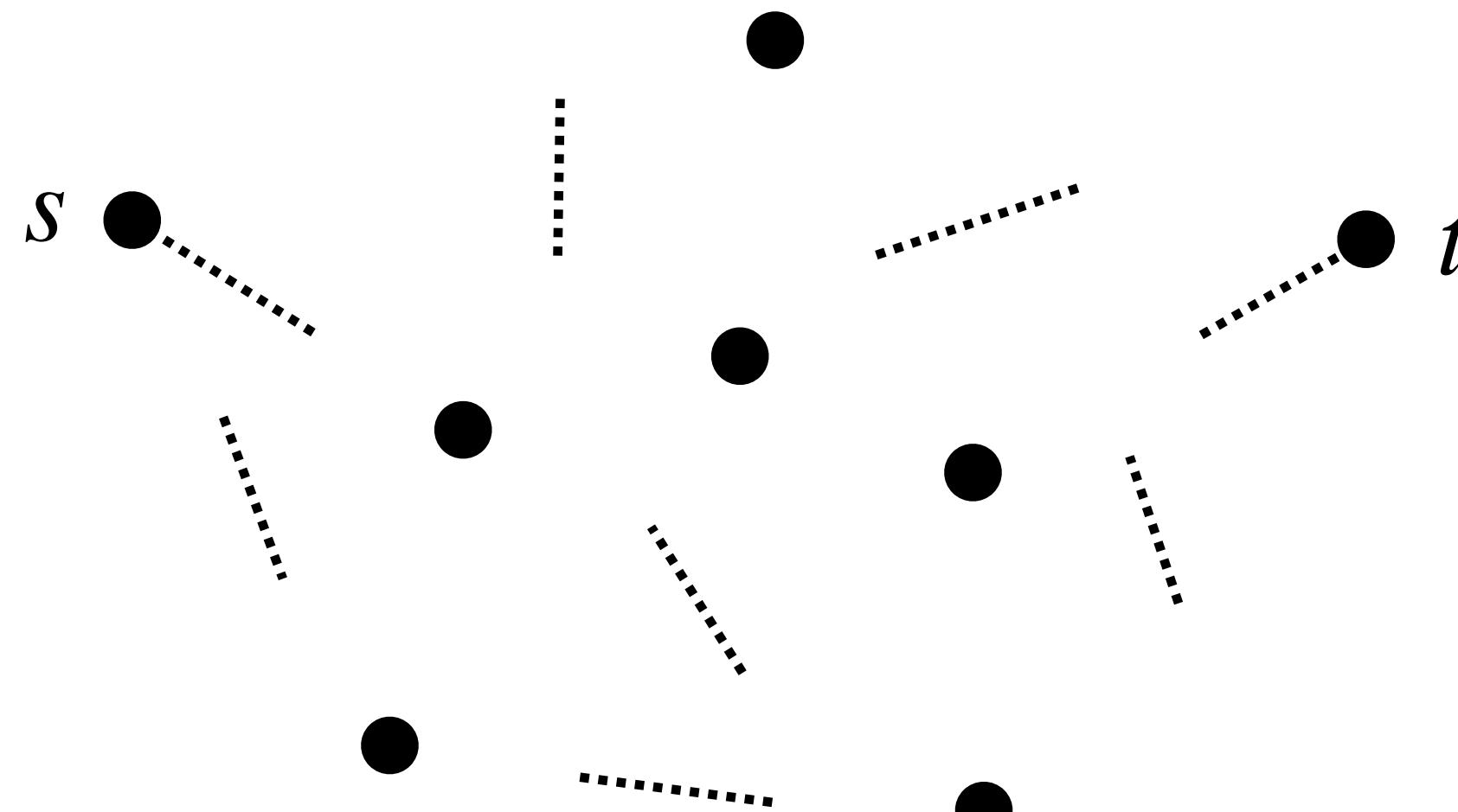
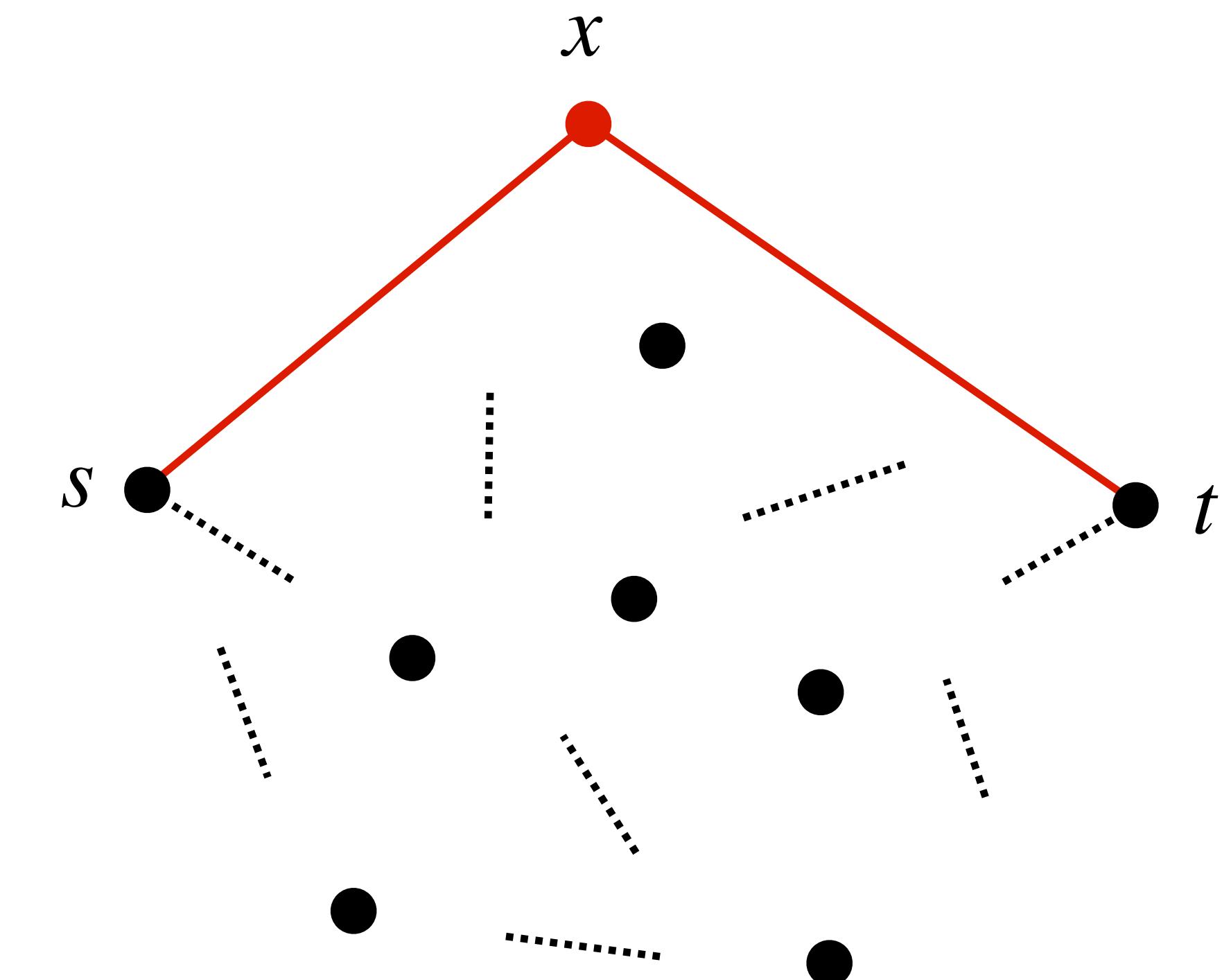
Hamiltonian path in G gives
a hamiltonian cycle in G' .



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

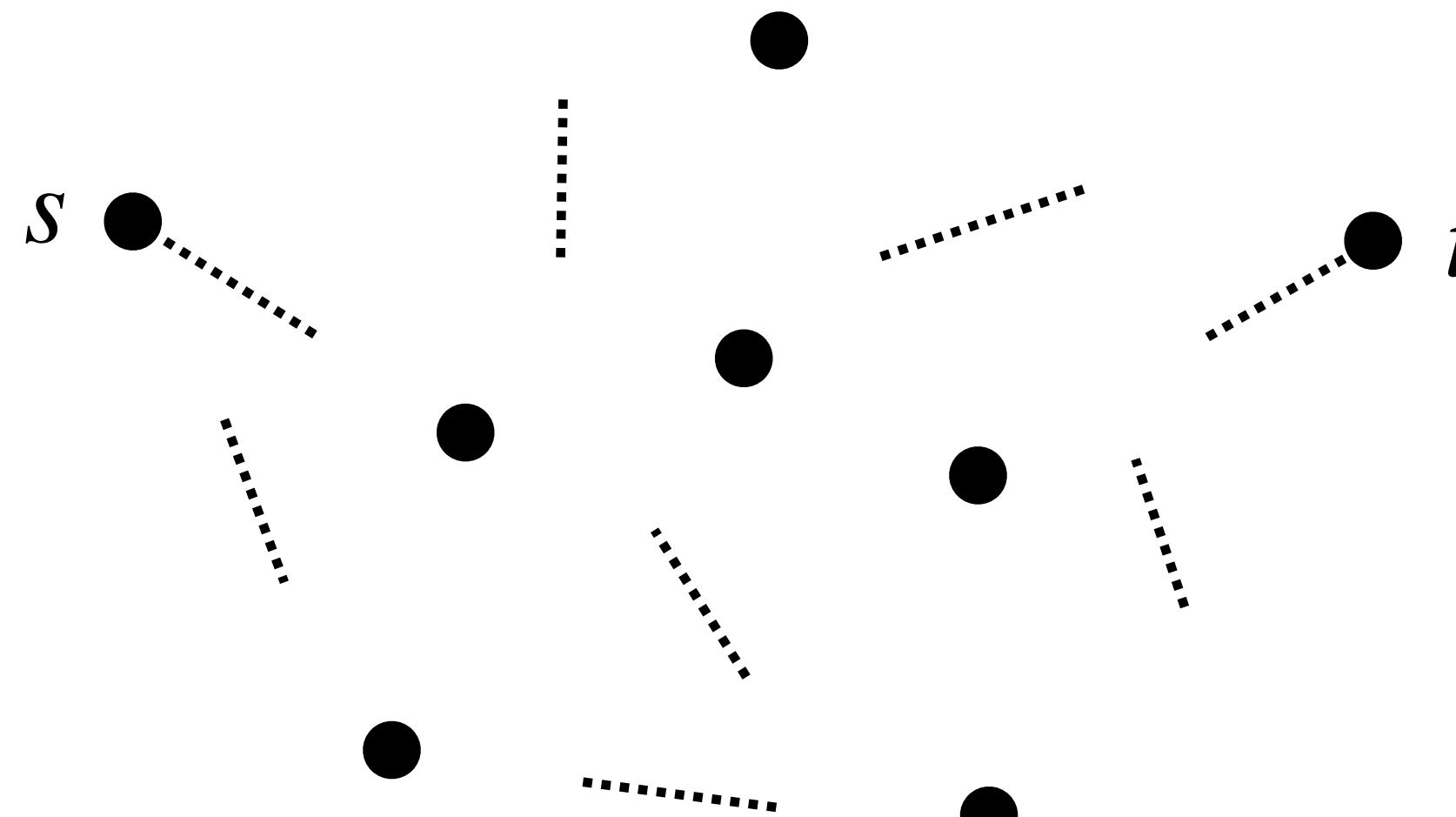
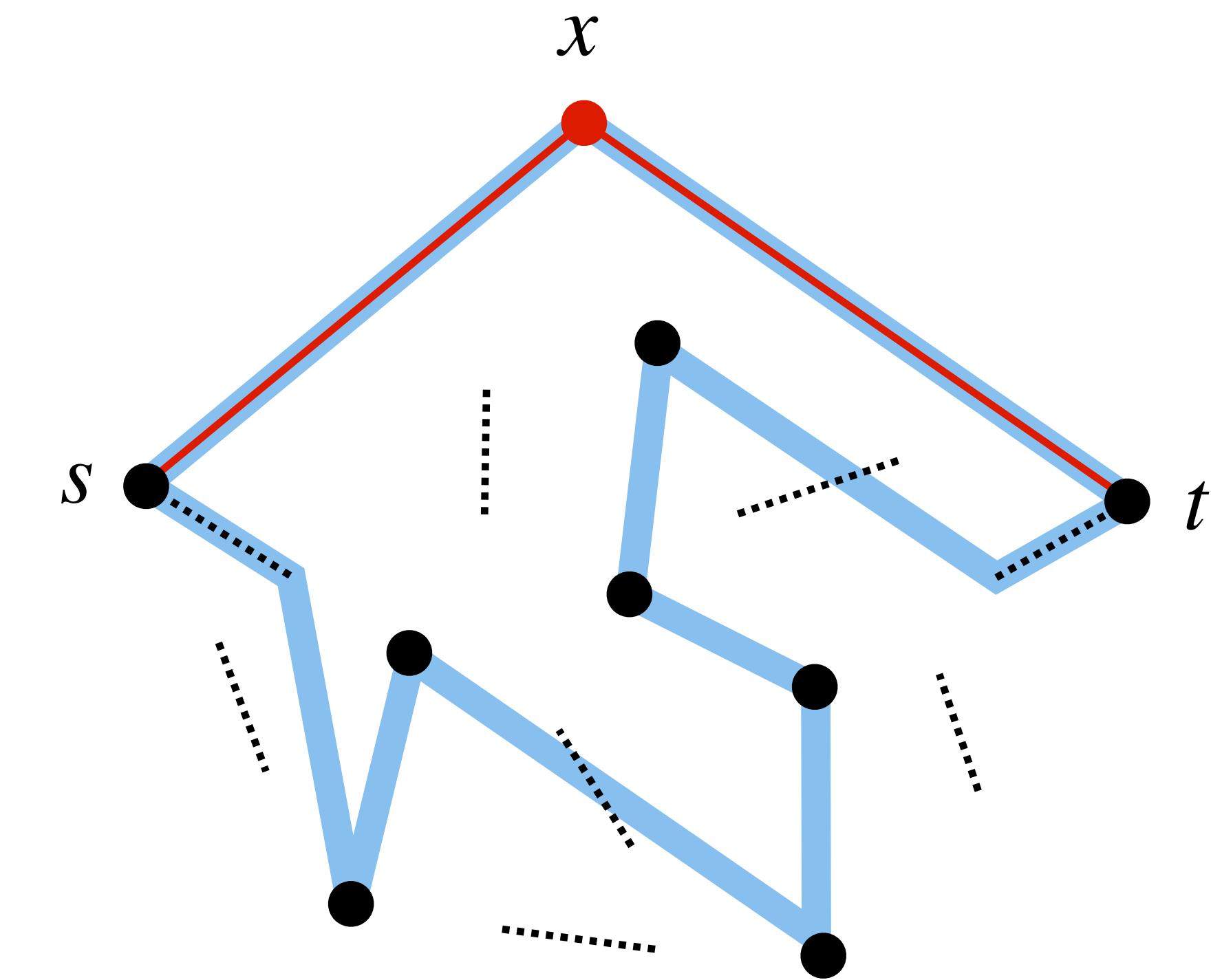
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

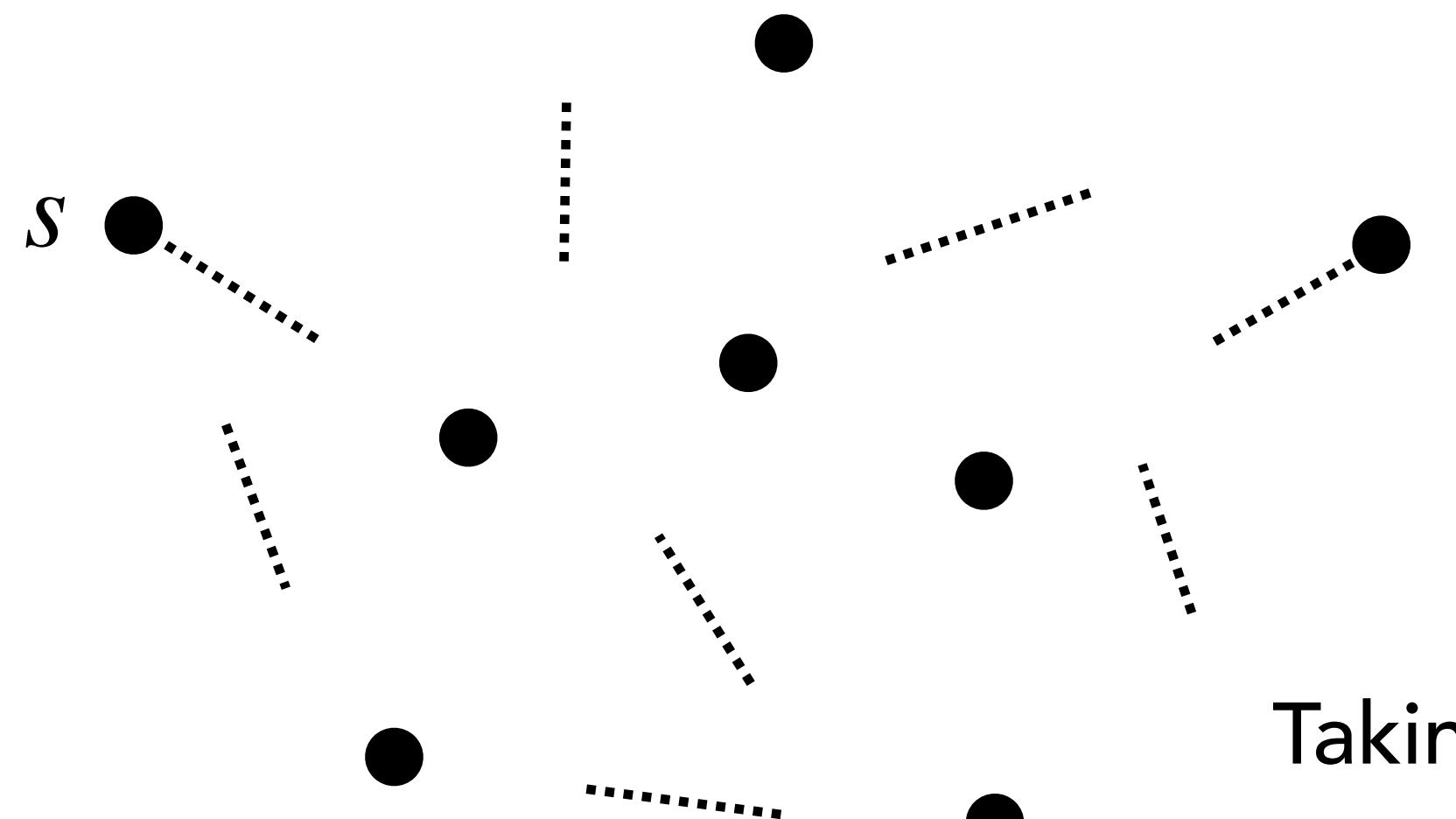
$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



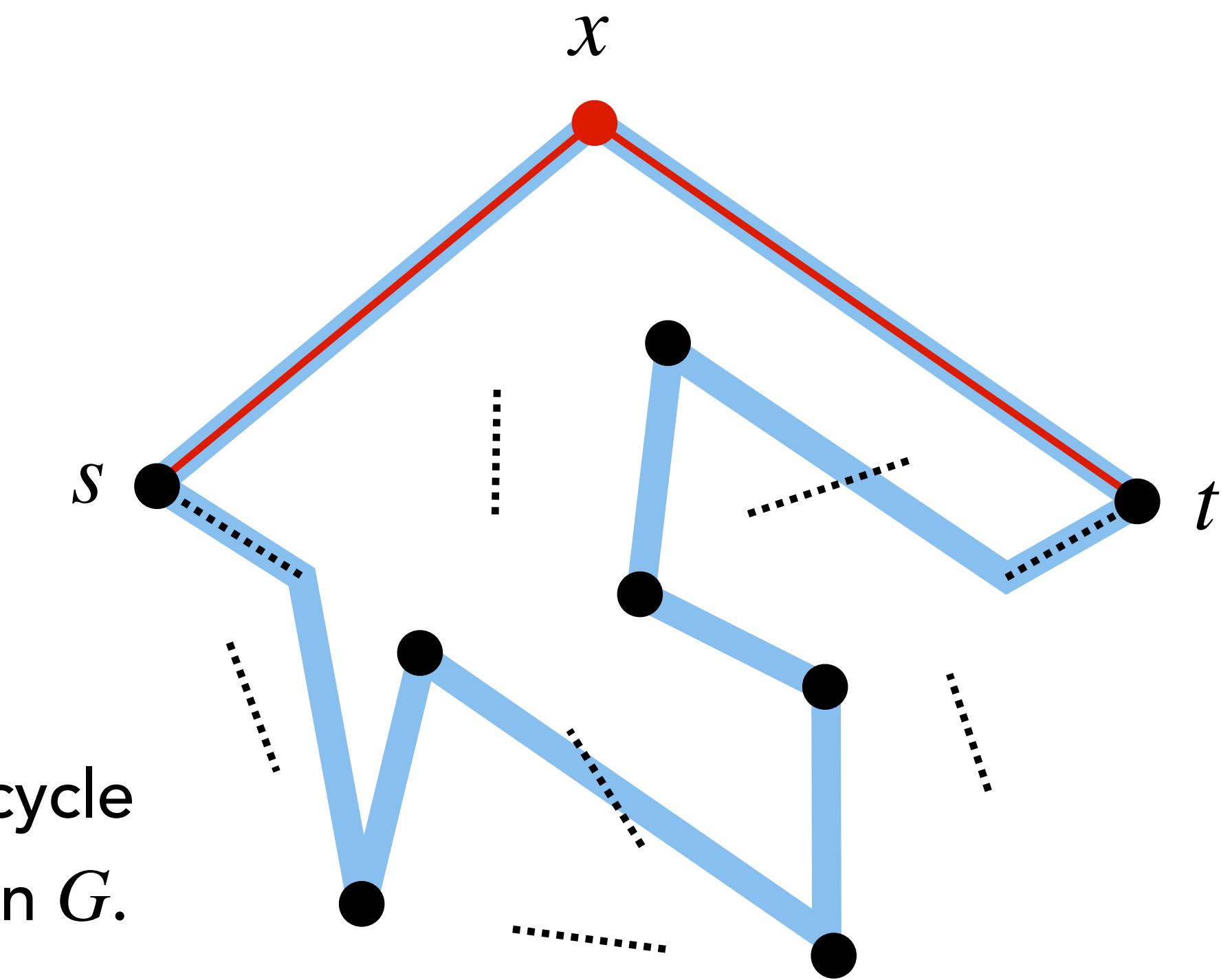
$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



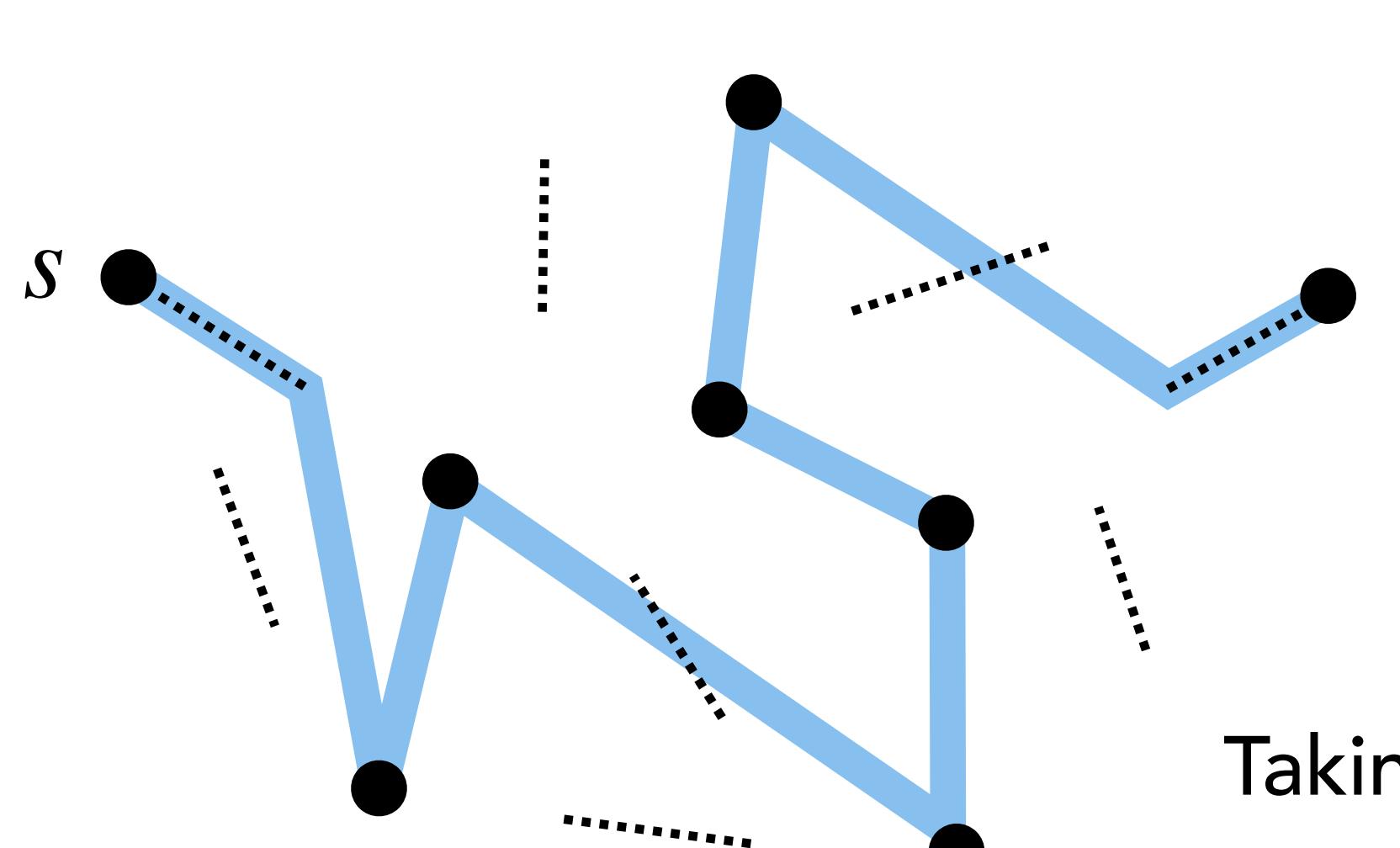
Taking out x from hamiltonian cycle
in G' gives a hamiltonian path in G .



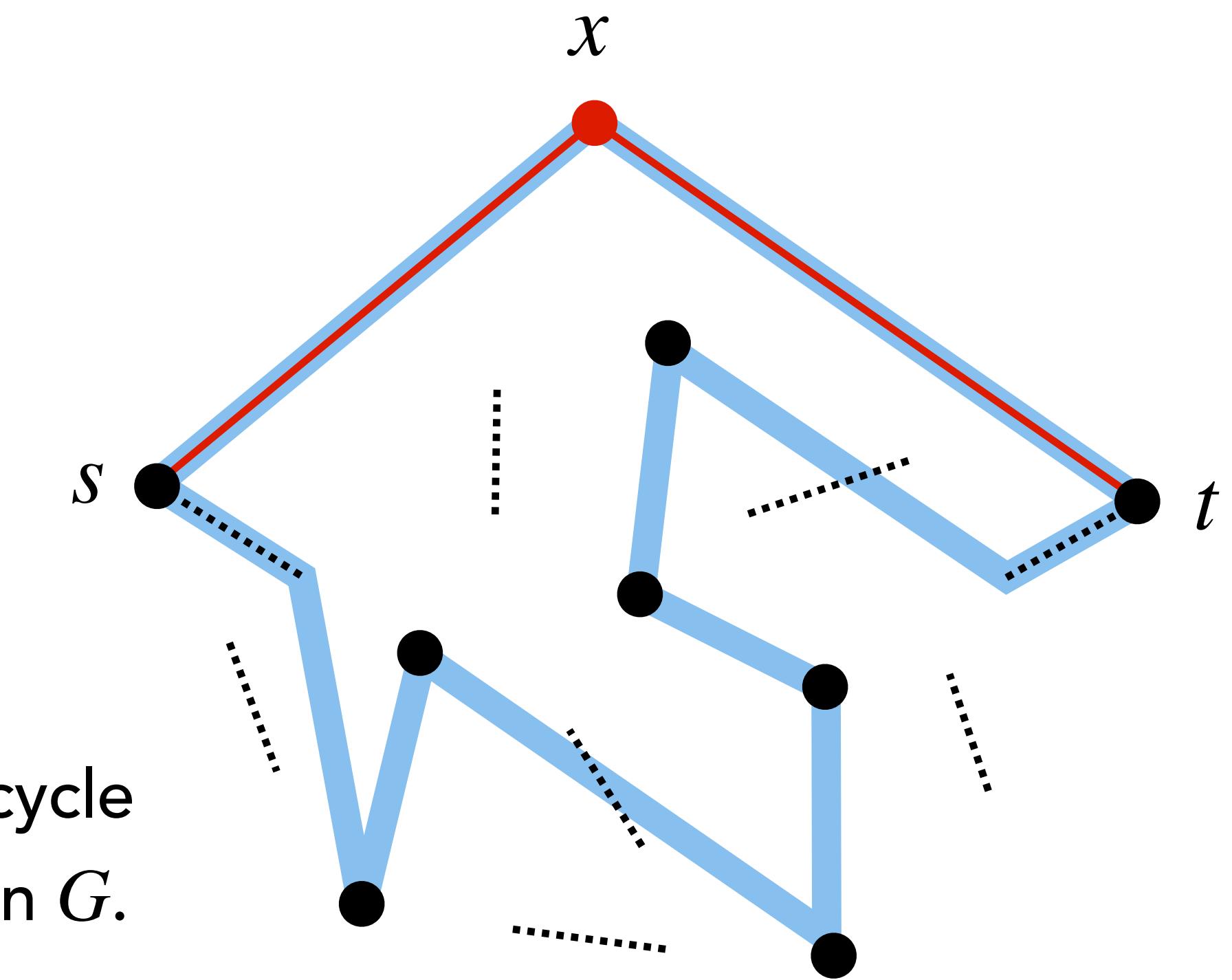
$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:



Taking out x from hamiltonian cycle
in G' gives a hamiltonian path in G .



$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:

$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:

- $G' = G$.

$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:

- $G' = G$.
- Add a new vertex x and edges $\{s, x\}$ and $\{t, x\}$.

$\text{Hampath} \leq_p \text{Hamcycle}$

- $\text{Hampath} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a hamiltonian path from } s \text{ to } t\}$
- $\text{Hamcycle} = \{\langle G' \rangle \mid G' \text{ is an undirected graph with a hamiltonian cycle}\}$

$\langle G, s, t \rangle \rightarrow \langle G' \rangle$:

- $G' = G$.
- Add a new vertex x and edges $\{s, x\}$ and $\{t, x\}$.

} Correctness is easy.